Solveeit Logo

Question

Question: A rock of mass m slides down with an initial velocity v<sub>0</sub>. A retarding force F = -k v<sup>...

A rock of mass m slides down with an initial velocity v0. A retarding force F = -k v1/2 acts on the body. The velocity at any instant is given by

A

v = v0 - ktm\frac { \mathrm { kt } } { \mathrm { m } }

B

v = v0 - (ktm)2\left( \frac { \mathrm { kt } } { \mathrm { m } } \right) ^ { 2 }

C

v=v0ktm\sqrt { \mathrm { v } } = \sqrt { \mathrm { v } _ { 0 } } - \frac { \mathrm { kt } } { \mathrm { m } }

D

None of these

Answer

v=v0ktm\sqrt { \mathrm { v } } = \sqrt { \mathrm { v } _ { 0 } } - \frac { \mathrm { kt } } { \mathrm { m } }

Explanation

Solution

mdvdt=kv1/2\frac { \mathrm { mdv } } { \mathrm { dt } } = - \mathrm { kv } ^ { 1 / 2 }

or v0vdvv1/2=0tkdtm\int _ { \mathrm { v } _ { 0 } } ^ { \mathrm { v } } \frac { \mathrm { dv } } { \mathrm { v } ^ { 1 / 2 } } = - \int _ { 0 } ^ { \mathrm { t } } \frac { \mathrm { kdt } } { \mathrm { m } }

or v=v0ktm\sqrt { \mathrm { v } } = \sqrt { \mathrm { v } _ { 0 } } - \frac { \mathrm { kt } } { \mathrm { m } }