Solveeit Logo

Question

Question: A river is 80 meters wide. The depth d in meters at a distance x meter from one bank to the other ba...

A river is 80 meters wide. The depth d in meters at a distance x meter from one bank to the other bank is given by the following table

x meters01020304050607080
d meters047912151480

The approximate area of the cross section using Simpson’s rule is
(a) 700 sq. Meters
(b) 800 sq. Meters
(c) 720 sq. Meters
(d) 740 sq. Meters

Explanation

Solution

Hint : To solve the given question, we will use the Simpson’s one – third rile of integration which says that the integration of a function f(x) is approximated by a second-order polynomial. It is defined by:
abf(x)dx=h3[(y0+yn)+4(y1+y3+y5+.....+yn1)+2(y2+y4+....+yn2)]\int\limits_{a}^{b}{f\left( x \right)}dx=\dfrac{h}{3}\left[ \left( {{y}_{0}}+{{y}_{n}} \right)+4\left( {{y}_{1}}+{{y}_{3}}+{{y}_{5}}+.....+{{y}_{n-1}} \right)+2\left( {{y}_{2}}+{{y}_{4}}+....+{{y}_{n-2}} \right) \right]
where h is the difference between the terms and y0,y1,......yn{{y}_{0}},{{y}_{1}},......{{y}_{n}} are equally spaced. So, we will find out the value of h and y0,y1,......yn{{y}_{0}},{{y}_{1}},......{{y}_{n}} and then we will put these in the above formula to get the appropriate area.

Complete step by step solution :
Before we solve the given question, we will first find out what Simpson’s rule is. Simpson’s rule is a numerical method that is used to evaluate the definite integral. Let us assume that the depth of the river is a function of distance x, i.e. d = f(x). Now, we have to calculate the area of the river. We know that the area of any function g(x) over an interval [a, b] is given by
Area=abg(x)dx\text{Area}=\int\limits_{a}^{b}{g\left( x \right)dx}
Now, according to Simpson’s one – third method, the integral of a definite function over an interval is given by
abg(x)dx=h3[(y0+yn)+4(y1+y3+y5+.....+yn1)+2(y2+y4+....+yn2)]\int\limits_{a}^{b}{g\left( x \right)}dx=\dfrac{h}{3}\left[ \left( {{y}_{0}}+{{y}_{n}} \right)+4\left( {{y}_{1}}+{{y}_{3}}+{{y}_{5}}+.....+{{y}_{n-1}} \right)+2\left( {{y}_{2}}+{{y}_{4}}+....+{{y}_{n-2}} \right) \right]
where h=banh=\dfrac{b-a}{n} and n is the number of divisions and y0,y1,.....yn{{y}_{0}},{{y}_{1}},.....{{y}_{n}} are the terms which are equally spaced between a and b.
In our case, the river is 80 meters long, so a = 0 and b = 80. There are total of 8 divisions given in the question. Thus,
h=8008h=\dfrac{80-0}{8}
h=808\Rightarrow h=\dfrac{80}{8}
h=10\Rightarrow h=10
The values of y0,y1,.....y8{{y}_{0}},{{y}_{1}},.....{{y}_{8}} are given in the question. Thus, the area will be,
Area=(d)dx=f(x)dx\text{Area}=\int{\left( d \right)dx}=\int{f\left( x \right)dx}
Area=103[(0+0)+4(4+9+15+8)+2(7+12+14)]sq.meters\Rightarrow \text{Area}=\dfrac{10}{3}\left[ \left( 0+0 \right)+4\left( 4+9+15+8 \right)+2\left( 7+12+14 \right) \right]sq.meters
Area=103[0+4(36)+2(33)]sq.meters\Rightarrow \text{Area}=\dfrac{10}{3}\left[ 0+4\left( 36 \right)+2\left( 33 \right) \right]sq.meters
Area=103[144+66]sq.meters\Rightarrow \text{Area}=\dfrac{10}{3}\left[ 144+66 \right]sq.meters
Area=103[210]sq.meters\Rightarrow \text{Area}=\dfrac{10}{3}\left[ 210 \right]sq.meters
Area=700sq.meters\Rightarrow \text{Area}=700sq.meters
Hence, option (b) is correct.

Note : In the above solution, we have used Simpson’s one – third rule of integration. In place of this, we can all use Simpson’s 38\dfrac{3}{8} rule of integration. According to this, we have,
Area=3h8[(y0+y8)+3(y1+y2+y4+y5+y7)+2(y3+y6)]sq.meters\text{Area}=\dfrac{3h}{8}\left[ \left( {{y}_{0}}+{{y}_{8}} \right)+3\left( {{y}_{1}}+{{y}_{2}}+{{y}_{4}}+{{y}_{5}}+{{y}_{7}} \right)+2\left( {{y}_{3}}+{{y}_{6}} \right) \right]sq.meters
Area=3×108[(0+0)+3(4+7+12+15+8)+2(9+14)]sq.meters\Rightarrow \text{Area}=\dfrac{3\times 10}{8}\left[ \left( 0+0 \right)+3\left( 4+7+12+15+8 \right)+2\left( 9+14 \right) \right]sq.meters
Area=154[0+3(46)+2(23)]sq.meters\Rightarrow \text{Area}=\dfrac{15}{4}\left[ 0+3\left( 46 \right)+2\left( 23 \right) \right]sq.meters
Area=154[138+46]sq.meters\Rightarrow \text{Area}=\dfrac{15}{4}\left[ 138+46 \right]sq.meters
Area=154[184]sq.meters\Rightarrow \text{Area}=\dfrac{15}{4}\left[ 184 \right]sq.meters
Area=15×46 sq.meters\Rightarrow \text{Area}=15\times 46\text{ }sq.meters
Area=690 sq.meters\Rightarrow \text{Area}=690\text{ }sq.meters
Area700 sq.meters\Rightarrow \text{Area}\simeq 700\text{ }sq.meters
One thing to note is that these are not the actual areas. These are just approximated areas, so they may vary.