Solveeit Logo

Question

Question: A ring of radius *R* is rotating with an angular speed \(\omega _ { 0 }\) about a horizontal axis. I...

A ring of radius R is rotating with an angular speed ω0\omega _ { 0 } about a horizontal axis. It is placed on a rough horizontal table. The coefficient of kinetic friction is.The time after which it starts rolling is

A

ω0μkR2 g\frac { \omega _ { 0 } \mu _ { \mathrm { k } } R } { 2 \mathrm {~g} }

B

ω0 g2μkR\frac { \omega _ { 0 } \mathrm {~g} } { 2 \mu _ { \mathrm { k } } R }

C
D
Answer
Explanation

Solution

Acceleration produced in the centre of mass due to friction

a=fM=μkMgMμkg\mathrm { a } = \frac { \mathrm { f } } { \mathrm { M } } = \frac { \mu _ { \mathrm { k } } \mathrm { Mg } } { \mathrm { M } } \mu _ { \mathrm { k } } \mathrm { g }

Where M is the mass of the ring, …(i)

Angular retardation produced by the torque due to friction

α=τI=fRI=μkMgRI\alpha = \frac { \tau } { \mathrm { I } } = \frac { \mathrm { fR } } { \mathrm { I } } = \frac { \mu _ { \mathrm { k } } \mathrm { MgR } } { \mathrm { I } } …(ii)

As v = u + at

(Using (i))

As ω=ω0+αt\omega = \omega _ { 0 } + \alpha t

(Using (ii))

For rolling without slipping

V = Rω\mathrm { R } \omega

vRω0μkMgRIt\therefore \frac { \mathrm { v } } { \mathrm { R } } - \omega _ { 0 } - \frac { \mu _ { \mathrm { k } } \mathrm { MgR } } { \mathrm { I } } \mathrm { t }

μkgtR=ω01+MR2It=Rω0μkg(1+MR2I)\frac { \mu _ { \mathrm { k } } \mathrm { gt } } { \mathrm { R } } = \frac { \omega _ { 0 } } { 1 + \frac { \mathrm { MR } ^ { 2 } } { \mathrm { I } } } \Rightarrow \mathrm { t } = \frac { \mathrm { R } \omega _ { 0 } } { \mu _ { \mathrm { k } } \mathrm { g } \left( 1 + \frac { \mathrm { MR } ^ { 2 } } { \mathrm { I } } \right) }

For ring, I=MR2\mathrm { I } = \mathrm { MR } ^ { 2 }

t=Rω0μkg(1+MR2MR2)=Rω02μkg\therefore \mathrm { t } = \frac { \mathrm { R } \omega _ { 0 } } { \mu _ { \mathrm { k } } \mathrm { g } \left( 1 + \frac { \mathrm { MR } ^ { 2 } } { \mathrm { MR } ^ { 2 } } \right) } = \frac { \mathrm { R } \omega _ { 0 } } { 2 \mu _ { \mathrm { k } } \mathrm { g } }