Solveeit Logo

Question

Physics Question on Electric charges and fields

A ring of radius R carries a charge Q, uniformly distributed along its circumference. What is the ratio of the electric field strength at a distance R to that at a distance R2\frac{R}{\sqrt{2}} along the axis?

A

38\frac{\sqrt{3}}{8}

B

338\frac{3\sqrt{3}}{8}

C

3342\frac{3\sqrt{3}}{4\sqrt{2}}

D

2233\frac{2\sqrt{2}}{3\sqrt{3}}

Answer

3342\frac{3\sqrt{3}}{4\sqrt{2}}

Explanation

Solution

The electric field at a point on the axis of a uniformly charged ring E=14πε0Qx(x2+R2)3/2E=\frac{1}{4\pi\varepsilon_{0} }\frac{Q x}{\left(x^{2}+R^{2}\right)^{3/ 2}} where R is the radius of the ring and x is the distance of the point on the axis from the centre of the ring. Atx=R,E=14πε0QR(R2+R2)3/2=14πε0QR(2R2)3/2At \, x=R, E=\frac{1}{4\pi\varepsilon_{0} }\frac{QR}{\left(R^{2}+R^{2}\right)^{3/ 2}}=\frac{1}{4\pi \varepsilon_{0}}\frac{Q R}{\left(2R^{2}\right)^{3 /2}} Atx=R2E=14πε0Q(R2)((R2)2+R2)3/2=14πε02QR(3R2)3/2At \, x=\frac{R}{\sqrt{2}} 'E'=\frac{1}{4\pi \varepsilon_{0}}\frac{Q\left(\frac{R}{\sqrt{2}}\right)}{\left(\left(\frac{R}{\sqrt{2}}\right)^{2}+R^{2}\right)^{3 /2}}=\frac{1}{4\pi \varepsilon_{0}}\frac{2 QR}{\left(3R^{2}\right)^{3 /2}} EE=(3)3/22(2)3/2=3342\therefore\, \frac{E}{E'}=\frac{\left(3\right)^{3/2}}{2\left(2\right)^{3/ 2}}=\frac{3\sqrt{3}}{4\sqrt{2}}