Solveeit Logo

Question

Question: A ring of mass ‘M’ and radius ‘R’ slipped into cone kept on a horizontal surface. The cone is accele...

A ring of mass ‘M’ and radius ‘R’ slipped into cone kept on a horizontal surface. The cone is accelerated towards right with acceleration ‘a’. There is no friction between ring and the cone. Tension in ring at point A is-

A

Ma2π\frac { \mathrm { Ma } } { 2 \pi }

B

Mgcotθ2π\frac { M g \cot \theta } { 2 \pi }

C

M(a+gcotθ)2π\frac { M ( a + g \cot \theta ) } { 2 \pi }

D

M(a+gtanθ)2π\frac { \mathrm { M } ( \mathrm { a } + \mathrm { g } \tan \theta ) } { 2 \pi }

Answer

M(a+gcotθ)2π\frac { M ( a + g \cot \theta ) } { 2 \pi }

Explanation

Solution

Tension in string = F.R

where, F = Net force in radially outward direction (excluding tension) per unit length

\ F = (l g cot q + la)R

(l = mass/length)

= M2π(gcotθ+a)\frac { M } { 2 \pi } ( g \cot \theta + a )