Solveeit Logo

Question

Physics Question on Current electricity

A ring is made of a wire having a resistance R0=12ΩR_0=12\, \Omega. Find the points A and B, as shown in the figure, at which a current carrying conductor should be connected so that the resistance R of the sub circuit between these points is equal to 83Ω\frac{8}{3} \Omega

A

l1l2=58\frac{l_1}{l_2}=\frac{5}{8}

B

l1l2=13\frac{l_1}{l_2}=\frac{1}{3}

C

l1l2=38\frac{l_1}{l_2}=\frac{3}{8}

D

l1l2=12\frac{l_1}{l_2}=\frac{1}{2}

Answer

l1l2=12\frac{l_1}{l_2}=\frac{1}{2}

Explanation

Solution

Let x be resistance per unit length of the wire. Then, The resistance of the upper portion is R1=xl1\, \, \, \, R_1 =xl_1 The resistance of the lower portion is R2=xl2\, \, \, \, R_2 =xl_2 Equivalent resistance between A and B is R=R1R2R1+R2=(xl1)(xl2)xl1+xl2\, \, \, \, R=\frac{R_1R_2}{R_1+R_2}=\frac{(xl_1)(xl_2)}{xl_1+xl_2} 83=xl1l2l1+l2\, \, \, \, \frac{8}{3} =\frac{xl_1l_2}{l_1+l_2}\, or 83=xl1l2l2(l1l2+1)\, \frac{8}{3}=\frac{xl_1l_2}{l_2\bigg(\frac{l_1}{l_2}+1\bigg)} or 83=xl1(l1l2+1)\frac{8}{3} =\frac{xl_1}{\bigg(\frac{l_1}{l_2}+1\bigg)} ...(i) Also R0=xl1+xl2R_0=xl_1+xl_2 12=x(l1+l2)\, \, \, \, \, \, 12 = x (l_1+l_2) 12=xl2(l1l2+1)\, \, \, \, \, \, 12 =xl_2\bigg(\frac{l_1}{l_2}+1\bigg) ...(ii) Divide (i) by (ii), we get 8312=xl1(l1l2+1)xl2(l1l2+1)\, \, \, \, \frac{\frac{8}{3}}{12} =\frac{\frac{xl_1}{\bigg(\frac{l_1}{l_2}+1\bigg)}}{xl_2\bigg(\frac{l_1}{l_2}+1\bigg)}\, or 836=l1l2(l1l2+1)2\, \frac{8}{36}=\frac{l_1}{l_2\bigg(\frac{l_1}{l_2}+1\bigg)^2} (l1l2+1)2836=l1l2 \bigg(\frac{l_1}{l_2}+1\bigg)^2{}\, \frac{8}{36}= \frac{l_1}{l_2}\, or (l1l2+1)229=l1l2\, \bigg(\frac{l_1}{l_2}+1\bigg)^2\, \frac{2}{9} =\frac{l_1}{l_2} Let y=l1l2y =\frac{l_1}{l_2} 2(y+1)2=9y\therefore 2(y+1)^2 = 9y \, or 2y2+2+4y=9y\, 2y^2+2+4y =9y or 2y25y+2=02y^2 - 5y + 2 =0 Solving this quadratic equation, we get y=12 \, \, \, \, \, y= \frac{1}{2}\, or 2l1l2=12 2\, \therefore \frac{l_1}{l_2} = \frac{1}{2}