Solveeit Logo

Question

Question: A rigid body is rotating with a constant angular speed of 3 rad.s$^{-1}$ about a fixed axis passing ...

A rigid body is rotating with a constant angular speed of 3 rad.s1^{-1} about a fixed axis passing through the points AA and BB with coordinates (0,1,1)(0, -1, 1) and (1,1,3)(1, 1, 3) respectively. Assuming all quantities in S.I. units, the instantaneous speed of the point PP of the body with coordinates (4,6,7)(4, 6, 7) is

A

3

B

2

C

6

D

4

Answer

3

Explanation

Solution

The instantaneous speed of a point on a rigid body rotating about a fixed axis is given by the formula v=ωrv = \omega r, where ω\omega is the angular speed and rr is the perpendicular distance of the point from the axis of rotation.

1. Determine the axis of rotation:

The axis passes through points A(0,1,1)A(0, -1, 1) and B(1,1,3)B(1, 1, 3). The direction vector of the axis, L\vec{L}, can be found by calculating AB\vec{AB}: L=AB=BA=(10,1(1),31)=(1,2,2)\vec{L} = \vec{AB} = B - A = (1-0, 1-(-1), 3-1) = (1, 2, 2).

2. Calculate the magnitude of the axis direction vector:

L=AB=12+22+22=1+4+4=9=3|\vec{L}| = |\vec{AB}| = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3.

3. Determine the position vector of point P relative to a point on the axis:

Let's use point A as the reference. The vector AP\vec{AP} is: AP=PA=(40,6(1),71)=(4,7,6)\vec{AP} = P - A = (4-0, 6-(-1), 7-1) = (4, 7, 6).

4. Calculate the perpendicular distance (r) of point P from the axis:

The perpendicular distance rr is the magnitude of the component of AP\vec{AP} that is perpendicular to AB\vec{AB}. This can be found using the formula for the distance of a point from a line in 3D space: r=AP×ABABr = \frac{|\vec{AP} \times \vec{AB}|}{|\vec{AB}|}

First, calculate the cross product AP×AB\vec{AP} \times \vec{AB}: AP×AB=ijk476122\vec{AP} \times \vec{AB} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & 7 & 6 \\ 1 & 2 & 2 \end{vmatrix} =i(7×26×2)j(4×26×1)+k(4×27×1)= \mathbf{i}(7 \times 2 - 6 \times 2) - \mathbf{j}(4 \times 2 - 6 \times 1) + \mathbf{k}(4 \times 2 - 7 \times 1) =i(1412)j(86)+k(87)= \mathbf{i}(14 - 12) - \mathbf{j}(8 - 6) + \mathbf{k}(8 - 7) =2i2j+1k=(2,2,1)= 2\mathbf{i} - 2\mathbf{j} + 1\mathbf{k} = (2, -2, 1)

Next, calculate the magnitude of the cross product: AP×AB=22+(2)2+12=4+4+1=9=3|\vec{AP} \times \vec{AB}| = \sqrt{2^2 + (-2)^2 + 1^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3.

Now, calculate the perpendicular distance rr: r=33=1mr = \frac{3}{3} = 1 \, \text{m}.

5. Calculate the instantaneous speed of point P:

Given angular speed ω=3rad.s1\omega = 3 \, \text{rad.s}^{-1}. The instantaneous speed v=ωr=(3rad.s1)×(1m)=3m.s1v = \omega r = (3 \, \text{rad.s}^{-1}) \times (1 \, \text{m}) = 3 \, \text{m.s}^{-1}.