Solveeit Logo

Question

Question: A \(\rightarrow\) Product and \(\left( \frac{dx}{dt} \right)\) = k[A]2 . If log\(\left( \frac{dx}{dt...

A \rightarrow Product and (dxdt)\left( \frac{dx}{dt} \right) = k[A]2 . If log(dxdt)\left( \frac{dx}{dt} \right)is plotted against log [A], then graph is of the type :

A
B
C
D
Answer
Explanation

Solution

dxdt=k[A]2\frac{dx}{dt} = k\lbrack A\rbrack^{2}

log(dxdt)=logk+2log[A]\log\left( \frac{dx}{dt} \right) = \log k + 2\log\lbrack A\rbrack

Slope = 2\text{Slope = 2}

Intercept= log k.