Solveeit Logo

Question

Question: A right circular cylindrical tower height \[h\] and radius \[r\] stands on the ground. Let \[P\] be ...

A right circular cylindrical tower height hh and radius rr stands on the ground. Let PP be a point in the horizontal plane ground and ABC are the semicircular edge of the top of the tower such that B is the point in it nearest to PP . The angles of elevation of the points A and B are 45° and 60° respectively. Show that hr=3(1+3)2\dfrac{h}{r} = \dfrac{{\sqrt 3 \left( {1 + \sqrt 3 } \right)}}{2}.

Explanation

Solution

We will draw a figure to represent the situation given in the question. We will find the value of hh and rr using standard trigonometric ratios. We will compute hr\dfrac{h}{r} and simplify the equation to get the desired form.

Formulas used:
In a right angled triangle tanθ=PB\tan \theta = \dfrac{P}{B} where PP is the perpendicular of the triangle and BBis the base of the triangle.
tan60=3\tan {60^ \circ } = \sqrt 3
tan45=1\tan {45^ \circ } = 1
(ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}

Complete step-by-step answer:
We will draw a figure for the question:

Both ATAT and BQBQ have length hh.
We will assume that the length of PQPQis xx.
In ΔBPQ\Delta BPQ, BQBQ is the perpendicular and PQPQ is the base. We will use the first and second formula to find hx\dfrac{h}{x} :
tan60=BQPQtan60=hx(1)3=hx\begin{array}{c}\tan {60^ \circ } = \dfrac{{BQ}}{{PQ}}\\\\\tan {60^ \circ } = \dfrac{h}{x}\\\\\left( 1 \right){\rm{ }}\sqrt 3 = \dfrac{h}{x}\end{array}
We can see from the figure that PT=x+rPT = x + r
In ΔPAT\Delta PAT, ATATis the perpendicular and PTPTis the base. We will use the first and third formula to find xx:
tan45=ATPTtan45=hx+r 1=hx+r\x+r=h(2)x=hr\tan {45^ \circ } = \dfrac{{AT}}{{PT}}\\\\\Rightarrow \tan {45^ \circ } = \dfrac{h}{{x + r}}\\\ \Rightarrow 1 = \dfrac{h}{{x + r}}\\\x + r = h\\\\\Rightarrow \left( 2 \right){\rm{ }}x = h - r
We will substitute hrh - r for xx in the first equation:
3=hhr\sqrt 3 = \dfrac{h}{{h - r}}
We will cross multiply hrh - r with 3\sqrt 3 :
3(hr)=h3h3r=h 3hh=3r h(31)=3r hr=331\Rightarrow \sqrt 3 \left( {h - r} \right) = h\\\\\Rightarrow \sqrt 3 h - \sqrt 3 r = h\\\ \Rightarrow \sqrt 3 h - h = \sqrt 3 r\\\ \Rightarrow h\left( {\sqrt 3 - 1} \right) = \sqrt 3 r\\\ \Rightarrow \dfrac{h}{r} = \dfrac{{\sqrt 3 }}{{\sqrt 3 - 1}}
We will multiply the numerator and the denominator in the right-hand side with(3+1)\left( {\sqrt 3 + 1} \right) to convert the denominator into rational form:
hr=3(3+1)(31)(3+1)\Rightarrow \dfrac{h}{r} = \dfrac{{\sqrt 3 \left( {\sqrt 3 + 1} \right)}}{{\left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 + 1} \right)}}
We will substitute 3\sqrt 3 for aa and 1 for bb in the 4th formula:
hr=3(3+1)(3)21 hr=3(3+1)2\Rightarrow \begin{array}{l}\dfrac{h}{r} = \dfrac{{\sqrt 3 \left( {\sqrt 3 + 1} \right)}}{{{{\left( {\sqrt 3 } \right)}^2} - 1}}\\\ \Rightarrow \dfrac{h}{r} = \dfrac{{\sqrt 3 \left( {\sqrt 3 + 1} \right)}}{2}\end{array}
\therefore We have shown that hr=3(3+1)2\dfrac{h}{r} = \dfrac{{\sqrt 3 \left( {\sqrt 3 + 1} \right)}}{2}.
Note: We can also find the solution by cross multiplying xx with 3\sqrt 3 in the 1st equation:
3x=h\x=h3\begin{array}{c}\sqrt 3 x = h\\\x = \dfrac{h}{{\sqrt 3 }}\end{array}
We will substitute h3\dfrac{h}{{\sqrt 3 }} for xx in the 2nd equation:
h3=hr h3h=r\h(131)=r\Rightarrow \dfrac{h}{{\sqrt 3 }} = h - r\\\ \Rightarrow \dfrac{h}{{\sqrt 3 }} - h = r\\\h\left( {\dfrac{1}{{\sqrt 3 }} - 1} \right) = r
We will take the L.C.M.:
h(133)=rhr=313\Rightarrow h\left( {\dfrac{{1 - \sqrt 3 }}{{\sqrt 3 }}} \right) = r\\\\\Rightarrow \dfrac{h}{r} = \dfrac{{\sqrt 3 }}{{1 - \sqrt 3 }}
We will multiply the numerator and the denominator in the right-hand side with(3+1)\Rightarrow \left( {\sqrt 3 + 1} \right) to convert the denominator into rational form:
hr=3(3+1)(31)(3+1)\Rightarrow \dfrac{h}{r} = \dfrac{{\sqrt 3 \left( {\sqrt 3 + 1} \right)}}{{\left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 + 1} \right)}}
We will substitute 3\sqrt 3 for aa and 1 for bb in the 4th formula:
hr=3(3+1)(3)21hr=3(3+1)2\Rightarrow \dfrac{h}{r} = \dfrac{{\sqrt 3 \left( {\sqrt 3 + 1} \right)}}{{{{\left( {\sqrt 3 } \right)}^2} - 1}}\\\\\Rightarrow \dfrac{h}{r} = \dfrac{{\sqrt 3 \left( {\sqrt 3 + 1} \right)}}{2}
We have proven the desired result.