Solveeit Logo

Question

Physics Question on carnot cycle

A reversible engine converts one-sixth of the heat input into work. When the temperature of the sink is reduced by 62^{\circ}C, the efficiency of the engine is doubled. The temperatures of the source and sink are

A

99^{\circ}C, 37^{\circ}C

B

80^{\circ}C, 37^{\circ}C

C

95^{\circ}C, 37^{\circ}C

D

90^{\circ}C, 37^{\circ}C

Answer

99^{\circ}C, 37^{\circ}C

Explanation

Solution

η1=1TLTH=WQ1=16\eta_{1}=1-\frac{T_{L}}{T_{H}}=\frac{W}{Q_{1}}=\frac{1}{6} or 5TH6TL=0...(i)5T_{H}-6T_{L}=0 ...\left(i\right) η2=1TL62TH=2η1=13(Given)\eta_{2}=1-\frac{T_{L}-62}{T_{H}}=2\eta_{1}=\frac{1}{3} \left(Given\right) 113=TL62TH\Rightarrow 1-\frac{1}{3}=\frac{T_{L}-62}{T_{H}} or 2TH3TL=186...(ii)2T_{H}-3T_{L}=-186 ...\left(ii\right) Solving (i)\left(i\right) and (ii)\left(ii\right), we get TH=372K=99C\therefore T_{H} = 372 \,K = 99^{\circ}C TL=56TH=56×372K=310K=37CT_{L}=\frac{5}{6}T_{H}=\frac{5}{6}\times 372\, K=310\, K =37^{\circ}C