Solveeit Logo

Question

Question: A resistor of resistance 100 ohms is connected to an AC source of \[\left( {12V} \right)\sin \left( ...

A resistor of resistance 100 ohms is connected to an AC source of (12V)sin(250πs1)t\left( {12V} \right)\sin \left( {250\pi {s^{ - 1}}} \right)t. Find the energy dissipated as heat during t=0t = 0 to t=1.0 mst = 1.0{\text{ }}ms.

Explanation

Solution

When a current flows through a resistor, the electrical energy is converted into heat energy, and this heat is dissipated by all those components which possess at least some resistance.
In the question, voltage and resistance are given so we can calculate the power that the resistor will dissipate over an interval of time by using the formula H=(Vrms)2RtH = \dfrac{{{{\left( {{V_{rms}}} \right)}^2}}}{R}t, where t is the time.

Complete step by step answer:
Resistance R=100ΩR = 100\Omega
Voltage in the AC source V=(12V)sin(250πs1)tV = \left( {12V} \right)\sin \left( {250\pi {s^{ - 1}}} \right)t
So the peak voltage of the AC source will be V0=12V{V_0} = 12V
Also, the RMS voltage will be Vrms=E0sinωt{V_{rms}} = {E_0}\sin \omega t
We know energy dissipated as heat is given as
H=(Vrms)2Rt(i)H = \dfrac{{{{\left( {{V_{rms}}} \right)}^2}}}{R}t - - (i) where, tt is the time
Since energy is dissipated fromt=0t = 0 to t=1.0mst = 1.0ms
Hence the heat dissipated from time t=0t = 0 to t=1.0mst = 1.0ms will be:
H=01×103dH(ii)H = \int\limits_0^{1 \times {{10}^{ - 3}}} {dH} - - (ii)
Now let’s differentiate equation (i) w.r.t to time t:
dH=(Vrms)2Rdt(iii)dH = \dfrac{{{{\left( {{V_{rms}}} \right)}^2}}}{R}dt - - - - (iii)
Now substituting equation (iii) in the equation (ii) we get,

H=01×103dH =01×103(Vrms)2Rdt  H = \int\limits_0^{1 \times {{10}^{ - 3}}} {dH} \\\ = \int\limits_0^{1 \times {{10}^{ - 3}}} {\dfrac{{{{\left( {{V_{rms}}} \right)}^2}}}{R}dt} \\\

Where Vrms=E0sinωt{V_{rms}} = {E_0}\sin \omega t

H=01×103(Vrms)2Rdt =01×103E02sin2ωtRdt =E02R01×103sin2ωtdt  H = \int\limits_0^{1 \times {{10}^{ - 3}}} {\dfrac{{{{\left( {{V_{rms}}} \right)}^2}}}{R}dt} \\\ = \int\limits_0^{1 \times {{10}^{ - 3}}} {\dfrac{{E_0^2{{\sin }^2}\omega t}}{R}dt} \\\ = \dfrac{{E_0^2}}{R}\int\limits_0^{1 \times {{10}^{ - 3}}} {{{\sin }^2}\omega tdt} \\\

Sincesin2ωt=1cos2ωt2{\sin ^2}\omega t = \dfrac{{1 - \cos 2\omega t}}{2}, hence by further solving, we can write

H=E02R01×103(1cos2ωt2)dt =E02R[0(1×103)12dt0(1×103)cos2ωt2dt] =E02R[12[t]0(1×103)12[sin2ωt2ω]0(1×103)] =E022R[(1030)12ω(sin2ω×1030)]  H = \dfrac{{E_0^2}}{R}\int\limits_0^{1 \times {{10}^{ - 3}}} {\left( {\dfrac{{1 - \cos 2\omega t}}{2}} \right)dt} \\\ = \dfrac{{E_0^2}}{R}\left[ {\int\limits_0^{\left( {1 \times {{10}^{ - 3}}} \right)} {\dfrac{1}{2}dt - \int\limits_0^{\left( {1 \times {{10}^{ - 3}}} \right)} {\dfrac{{\cos 2\omega t}}{2}} dt} } \right] \\\ = \dfrac{{E_0^2}}{R}\left[ {\dfrac{1}{2}\left[ t \right]_0^{\left( {1 \times {{10}^{ - 3}}} \right)} - \dfrac{1}{2}\left[ {\dfrac{{\sin 2\omega t}}{{2\omega }}} \right]_0^{\left( {1 \times {{10}^{ - 3}}} \right)}} \right] \\\ = \dfrac{{E_0^2}}{{2R}}\left[ {\left( {{{10}^{ - 3}} - 0} \right) - \dfrac{1}{{2\omega }}\left( {\sin 2\omega \times {{10}^{ - 3}} - 0} \right)} \right] \\\

Now by substituting E0=12{E_0} = 12 and ω=250π\omega = 250\pi in the above equation, we get
H=(12)22×100[(103)12×250π(sin2×250π×103)]H = \dfrac{{{{\left( {12} \right)}^2}}}{{2 \times 100}}\left[ {\left( {{{10}^{ - 3}}} \right) - \dfrac{1}{{2 \times 250\pi }}\left( {\sin 2 \times 250\pi \times {{10}^{ - 3}}} \right)} \right]
By further solving

H=144200[(103)12×250π(sin(2×250π×103))] =0.72[(103)1500π(sin(0.5π))] =0.72[(103)1500π(sinπ2)] =0.72[(103)1500π] =0.72[110001500π] =0.72[π21000π]  H = \dfrac{{144}}{{200}}\left[ {\left( {{{10}^{ - 3}}} \right) - \dfrac{1}{{2 \times 250\pi }}\left( {\sin \left( {2 \times 250\pi \times {{10}^{ - 3}}} \right)} \right)} \right] \\\ = 0.72\left[ {\left( {{{10}^{ - 3}}} \right) - \dfrac{1}{{500\pi }}\left( {\sin \left( {0.5\pi } \right)} \right)} \right] \\\ = 0.72\left[ {\left( {{{10}^{ - 3}}} \right) - \dfrac{1}{{500\pi }}\left( {\sin \dfrac{\pi }{2}} \right)} \right] \\\ = 0.72\left[ {\left( {{{10}^{ - 3}}} \right) - \dfrac{1}{{500\pi }}} \right] \\\ = 0.72\left[ {\dfrac{1}{{1000}} - \dfrac{1}{{500\pi }}} \right] \\\ = 0.72\left[ {\dfrac{{\pi - 2}}{{1000\pi }}} \right] \\\

As we know π=3.14\pi = 3.14, hence we get

H=0.72[π21000π] =0.72[3.1421000×3.14] =0.0002614 =2.61×104J  H = 0.72\left[ {\dfrac{{\pi - 2}}{{1000\pi }}} \right] \\\ = 0.72\left[ {\dfrac{{3.14 - 2}}{{1000 \times 3.14}}} \right] \\\ = 0.0002614 \\\ = 2.61 \times {10^{ - 4}}J \\\

Therefore, the energy dissipated as heat during t=0t = 0 to t=1.0 mst = 1.0{\text{ }}ms is 2.61×104J2.61 \times {10^{ - 4}}J.

Note: It is interesting to note here that the energy is dissipated only in the passive elements (resistance, inductance and capacitance) and not in the active elements. Passive elements are those which consume energy and don’t have their own source of power.