Solveeit Logo

Question

Physics Question on Gravitation

A remote-sensing satellite of earth revolves in a circular orbit at a height of 0.25×106m0.25 \times 10^6\, m above the surface of earth. If earth's radius is 6.38×1066.38 \times 10^6 m and g=9.8ms2g = 9.8 \,ms^{-2}, then the orbital speed of the satellite is

A

9.13kms19.13 \,km\,s^{-1}

B

6.67kms16.67 \, km\,s^{-1}

C

7.76kms17.76 \, km\,s^{-1}

D

8.56kms18.56 \, km\,s^{-1}

Answer

7.76kms17.76 \, km\,s^{-1}

Explanation

Solution

The orbital speed of the satellite is
Vo=Rg(R+h)V_o = R \sqrt \frac {g}{(R+h)}
where R is the earth's radius, g is the acceleration due to gravity on earth's surface and h is the height above the surface of earth.
Here, R=6.38×106mR = 6.38 \times 10^6m, g=9.8ms2\, g = 9.8 \,ms^{-2} and
h=0.25×106mh = 0.25 \times 10^6\, m
Vo(6.38×106m)(9.8ms2)(6.38×106m+0.25×106m)\therefore V_o (6.38 \times 10^6\,m) \sqrt \frac {(9.8 \, ms^{-2})}{(6.38\, \times \,10^6 \, m + 0.25\, \times\, 10^6 \,m)}
7.76×103ms1=7.76kms17.76 \times 10^3 \,ms^{-1} = 7.76 \, kms^{-1} (1km=103m) (\therefore 1\,km = 10^3\, m)