Solveeit Logo

Question

Question: A regular polygon of nine sides, each of length 2 is inscribed in a circle. The radius of the circle...

A regular polygon of nine sides, each of length 2 is inscribed in a circle. The radius of the circle is

A

cosecπ9\operatorname { cosec } \frac { \pi } { 9 }

B

cosecπ3\operatorname { cosec } \frac { \pi } { 3 }

C

cotπ9\cot \frac { \pi } { 9 }

D

tanπ9\tan \frac { \pi } { 9 }

Answer

cosecπ9\operatorname { cosec } \frac { \pi } { 9 }

Explanation

Solution

We know that radius of the circumcircle is given by

R=a2cosec(πn)R = \frac { a } { 2 } \operatorname { cosec } \left( \frac { \pi } { n } \right); Here, a=2,n=9a = 2 , n = 9

\thereforeRequired radius = 22cosecπ9=cosecπ9\frac { 2 } { 2 } \operatorname { cosec } \frac { \pi } { 9 } = \operatorname { cosec } \frac { \pi } { 9 }.