Solveeit Logo

Question

Mathematics Question on Conic sections

A rectangular hyperbola whose centre is C is cut by any circle of radius r in four points P, Q, R and S. Then CP2+CQ2+CR2+CS2=CP^2 + CQ^2 + CR^2 + CS^2 =

A

r2r^2

B

2r22r^2

C

3r23r^2

D

4r24r^2

Answer

4r24r^2

Explanation

Solution

Let the equation of the circle be x2+y2+2gx+2fy+c=0x^{2}+y^{2}+2gx+2fy+c = 0 and let the rect. hyperbola be xy=1xy = 1 y=1x \Rightarrow y =\frac{1}{x} Putting in the equation of the circle x2+1x2+2gx+2fyx+c=0x^{2}+\frac{1}{x^{2}}+2gx+\frac{2fy}{x}+c = 0 x4+2gx3+cx2+2fx+1=0 \Rightarrow x^{4}+2gx^{3}+cx^{2}+2fx+1=0 this is fourth degree equation in xx giving four values of xx say x1,x2,x3,x4x_{1}, x_{2}, x_{3}, x_{4} Σx1=2g\therefore\Sigma x_{1} = -2g Σx1x2=c \Sigma x_{1}x_{2} = c Σx12=(Σx1)22Σx1x2=4g22c\therefore \Sigma x_{1}^{2} = \left(\Sigma x_{1}\right)^{2} -2 \Sigma x_{1}x_{2} = 4g^{2} -2c Equation whose roots are reciprocals of the roots of (1)\left(1\right)is y4+2fy3+cy2+2gy+1=0y^{4}+2fy^{3}+cy^{2}+2gy+1 = 0 If y1,y2,y3,y4y_{1}, y_{2}, y_{3}, y_{4} are it's roots then Σy12=(Σy1)22Σy1y2=4f22c \Sigma y_{1}^{2} = \left( \Sigma y_{1}\right)^{2} -2 \Sigma y_{1}y_{2} = 4f^{2} - 2c Now CP2+CQ2+CR2+CS2CP^{2} +CQ^{2}+CR^{2}+CS^{2} =x12+x22+x32+x42+y12+y22+y32+y42= x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+y_{1}^{2}+y_{2}^{2} +y_{3}^{2}+y_{4}^{2} (wherex1y1=1etc.)\left( {\text{where}}\,\, x_{1}y_{1} = 1 \,\,{\text{etc}}. \right) =4g22c+4f22c= 4g^{2}-2c+4f^{2}-2c 4(g2+f2c)=4r24\left(g^{2}+f^{2}-c\right) = 4r^{2}