Solveeit Logo

Question

Physics Question on Electromagnetic waves

A rectangular conducting loop of length 4 cm and width 2 cm is in the X-Y plane. It is being moved away from a thin and long conducting wire along the direction (32x^+12y^\frac{\sqrt3}{2}\hat{x}+\frac{1}{2}\hat{y}) with constant speed v. The wire is carrying a steady current I = 10 A in the +ve X- direction. A current of 10 μA flows through the loop when it is at a distance d = 4 cm from the wire. If the resistance of the loop is 0.1 Ω\Omega. Then the value of v is ........m/s
A rectangular conducting loop

Answer

long conducting wire
Induced emf in AB = ((V×B).l(\vec{V}\times \vec{B}).\vec{l}

B=l0i2πr=4π×1072π×4×102=12×104TB=\frac{l_0i}{2\pi r}=\frac{4\pi\times10^{-7}}{2\pi\times 4\times10^{-2}}=\frac{1}{2}\times10^{-4}T
emf in AB=e1=B×12×2×102×VB\times\frac{1}{2}\times2\times10^{-2}\times V
V2×106Volt\Rightarrow \frac{V}{2}\times10^{-6}\,Volt
Induced emf in CD = e2=B×12×2×102×Ve_2 = B\times \frac{1}{2}\times 2\times10^{-2}\times V

μ02π(8×102)×12×2×102×V\Rightarrow \frac{\mu_0}{2\pi(8\times10^{-2})}\times\frac{1}{2}\times2\times10^{-2}\times V
V×14×106T\Rightarrow V\times\frac{1}{4}\times10^{-6}T
Emf in BC and AD are equal
long conducting wire
emf in loop = e1e2+ee+ee=e1e2e_1-e_2+e-e+e-e=e_1-e_2
V×12×10614×106×VV\times\frac{1}{2}\times10^{-6}-\frac{1}{4}\times10^{-6}\times V
=V4×106=\frac{V}{4}\times10^{-6}
Resistance of loop = 0.1Ω\Omega
Current in loop = I = V×1064×0.1=104×VμA\frac{V\times10^{-6}}{4\times0.1}=\frac{10}{4}\times V\mu A
10V4=10\frac{10V}{4}=10
V=4msV=4\,ms