Solveeit Logo

Question

Question: A rectangular conducting frame of width $l$ with battery of voltage $V$ is closed with conducting ro...

A rectangular conducting frame of width ll with battery of voltage VV is closed with conducting rod of length ll and mass mm. A uniform magnetic field BB is present perpendicular to plane. Just after closing the switch, rod starts off with speed uu. Energy dissipated in this process is

Answer

The instantaneous power dissipated is Pdiss=(VBlu)2RP_{diss} = \frac{(V - Blu)^2}{R}. If the question implies total energy dissipated from the start until the rod reaches speed uu, the answer is mVuBl12mu2\frac{mVu}{Bl} - \frac{1}{2}mu^2.

Explanation

Solution

The energy dissipated is the instantaneous power, Pdiss=I2RP_{diss} = I^2 R. The current II is given by Ohm's law, I=VEindRI = \frac{V - \mathcal{E}_{ind}}{R}, where Eind=Blu\mathcal{E}_{ind} = Blu is the induced emf. Thus, I=VBluRI = \frac{V - Blu}{R}. Substituting this into the power equation, we get Pdiss=(VBluR)2R=(VBlu)2RP_{diss} = \left(\frac{V - Blu}{R}\right)^2 R = \frac{(V - Blu)^2}{R}. If the question refers to the total energy dissipated until the rod reaches speed uu, we can use the work-energy theorem. The net force on the rod is Fnet=BlImgF_{net} = BlI - mg (assuming gravity is not acting vertically and the rod is horizontal, or if it is vertical and gravity is balanced by normal force). The initial net force is Fnet,0=BlVRF_{net,0} = Bl\frac{V}{R} (assuming u=0u=0 initially). The final net force is Fnet,f=BlVBluRF_{net,f} = Bl\frac{V-Blu}{R}. The rate of work done by the battery is Pbatt=VIP_{batt} = VI. The rate of energy dissipation is Pdiss=I2RP_{diss} = I^2 R. The rate of change of kinetic energy is dKdt=Fnetu\frac{dK}{dt} = F_{net} u. By energy conservation, Pbatt=Pdiss+dKdtP_{batt} = P_{diss} + \frac{dK}{dt}. Integrating over time until speed uu is reached: 0tVIdt=0tI2Rdt+0umudu\int_0^t VI dt = \int_0^t I^2 R dt + \int_0^u m u' du'. The total energy dissipated is 0tI2Rdt\int_0^t I^2 R dt. The work done by the battery is 0tVIdt\int_0^t VI dt. The change in kinetic energy is 12mu2\frac{1}{2}mu^2. So, Ediss=0tI2Rdt=0tVIdt12mu2E_{diss} = \int_0^t I^2 R dt = \int_0^t VI dt - \frac{1}{2}mu^2. The term 0tVIdt\int_0^t VI dt is the total energy supplied by the battery. The net emf at any instant is Vnet=VBluV_{net} = V - Blu. The current is I=VBluRI = \frac{V-Blu}{R}. The acceleration is a=BlIm=Bl(VBlu)mRa = \frac{BlI}{m} = \frac{Bl(V-Blu)}{mR}. Integrating aa to find u(t)u(t) is complex. A simpler approach is to consider the work-energy theorem in terms of forces and impulses. The net force on the rod is Fnet=BlI=Bl(VBlu)RF_{net} = BlI = \frac{Bl(V-Blu)}{R}. The equation of motion is mdudt=BlVRB2l2Rum \frac{du}{dt} = \frac{BlV}{R} - \frac{B^2l^2}{R} u. This is a first-order linear differential equation. The solution for u(t)u(t) is of the form u(t)=A(1ekt)u(t) = A(1 - e^{-kt}). The steady-state velocity is uss=VBlu_{ss} = \frac{V}{Bl}. The time constant is τ=mRB2l2\tau = \frac{mR}{B^2l^2}. So u(t)=VBl(1et/τ)u(t) = \frac{V}{Bl}(1 - e^{-t/\tau}). The energy dissipated until speed uu is reached is Ediss=0tI2Rdt=0t(VBluR)2Rdt=0t(VBlu)2RdtE_{diss} = \int_0^t I^2 R dt = \int_0^t \left(\frac{V-Blu}{R}\right)^2 R dt = \int_0^t \frac{(V-Blu)^2}{R} dt. Substitute u(t)u(t): Ediss=0t(VBlVBl(1et/τ))2Rdt=0t(VV(1et/τ))2Rdt=0t(Vet/τ)2Rdt=V2R0te2t/τdt=V2R[τ2e2t/τ]0t=V2τ2R(1e2t/τ)E_{diss} = \int_0^t \frac{(V - Bl\frac{V}{Bl}(1-e^{-t/\tau}))^2}{R} dt = \int_0^t \frac{(V - V(1-e^{-t/\tau}))^2}{R} dt = \int_0^t \frac{(Ve^{-t/\tau})^2}{R} dt = \frac{V^2}{R} \int_0^t e^{-2t/\tau} dt = \frac{V^2}{R} \left[-\frac{\tau}{2} e^{-2t/\tau}\right]_0^t = \frac{V^2\tau}{2R} (1 - e^{-2t/\tau}). As tt \to \infty, uV/Blu \to V/Bl, and EdissV2τ2R=V22RmRB2l2=mV22B2l2E_{diss} \to \frac{V^2\tau}{2R} = \frac{V^2}{2R} \frac{mR}{B^2l^2} = \frac{mV^2}{2B^2l^2}. This is the total energy dissipated as the rod reaches terminal velocity.

Alternatively, consider the total energy supplied by the battery up to the point where speed uu is reached. The total work done by the battery is Wbatt=0tVIdtW_{batt} = \int_0^t V I dt. The change in kinetic energy is ΔK=12mu2\Delta K = \frac{1}{2}mu^2. The energy dissipated is Ediss=WbattΔKE_{diss} = W_{batt} - \Delta K. The equation of motion is mdudt=BlVRB2l2Rum \frac{du}{dt} = \frac{BlV}{R} - \frac{B^2l^2}{R} u. Multiply by uu: mududt=BlVRuB2l2Ru2m u \frac{du}{dt} = \frac{BlV}{R} u - \frac{B^2l^2}{R} u^2. Integrate from t=0t=0 to t=tft=t_f (when speed is uu): 0tfmududtdt=0tfBlVRudt0tfB2l2Ru2dt\int_0^{t_f} m u \frac{du}{dt} dt = \int_0^{t_f} \frac{BlV}{R} u dt - \int_0^{t_f} \frac{B^2l^2}{R} u^2 dt. 12mu2=BlVR0tfudtB2l2R0tfu2dt\frac{1}{2} m u^2 = \frac{BlV}{R} \int_0^{t_f} u dt - \frac{B^2l^2}{R} \int_0^{t_f} u^2 dt. The energy dissipated is Ediss=0tfI2Rdt=0tf(VBluR)2Rdt=0tf(VBlu)2RdtE_{diss} = \int_0^{t_f} I^2 R dt = \int_0^{t_f} \left(\frac{V-Blu}{R}\right)^2 R dt = \int_0^{t_f} \frac{(V-Blu)^2}{R} dt. Let's use the relation 0tfVIdt=0tf(Blu)Idt+0tfI2Rdt\int_0^{t_f} V I dt = \int_0^{t_f} (Blu) I dt + \int_0^{t_f} I^2 R dt. Wbatt=Einduced+EdissW_{batt} = E_{induced} + E_{diss}. Ediss=WbattEinducedE_{diss} = W_{batt} - E_{induced}. Wbatt=0tfVVBluRdt=1R0tf(V2BluV)dtW_{batt} = \int_0^{t_f} V \frac{V-Blu}{R} dt = \frac{1}{R} \int_0^{t_f} (V^2 - BluV) dt. Einduced=0tfBluVBluRdt=1R0tf(BlVuB2l2u2)dtE_{induced} = \int_0^{t_f} Blu \frac{V-Blu}{R} dt = \frac{1}{R} \int_0^{t_f} (BlVu - B^2l^2u^2) dt. Ediss=1R0tf(V2BluVBlVu+B2l2u2)dt=1R0tf(V22BlVu+B2l2u2)dtE_{diss} = \frac{1}{R} \int_0^{t_f} (V^2 - BluV - BlVu + B^2l^2u^2) dt = \frac{1}{R} \int_0^{t_f} (V^2 - 2BlVu + B^2l^2u^2) dt. This is not correct.

Let's go back to Wbatt=ΔK+EdissW_{batt} = \Delta K + E_{diss}. Wbatt=0tfVIdtW_{batt} = \int_0^{t_f} VI dt. ΔK=12mu2\Delta K = \frac{1}{2}mu^2. Ediss=0tfI2RdtE_{diss} = \int_0^{t_f} I^2 R dt. From mdudt=BlVRB2l2Rum \frac{du}{dt} = \frac{BlV}{R} - \frac{B^2l^2}{R} u, we can find u(t)u(t) and then I(t)I(t). The total energy dissipated until the rod reaches speed uu is given by Ediss=mVuBl12mu2E_{diss} = \frac{mVu}{Bl} - \frac{1}{2}mu^2. This can be derived by considering the work done by the battery and the change in kinetic energy. The net emf is Vnet=VBluV_{net} = V - Blu. The current is I=VBluRI = \frac{V-Blu}{R}. The force is F=BlI=Bl(VBlu)RF = BlI = \frac{Bl(V-Blu)}{R}. The rate of work done by the battery is Pbatt=VIP_{batt} = VI. The rate of energy dissipation is Pdiss=I2RP_{diss} = I^2R. The rate of increase of kinetic energy is dKdt=Fu=Bl(VBlu)Ru\frac{dK}{dt} = Fu = \frac{Bl(V-Blu)}{R} u. By energy conservation, Pbatt=Pdiss+dKdtP_{batt} = P_{diss} + \frac{dK}{dt}. Integrating over time tft_f until speed uu is reached: 0tfVIdt=0tfI2Rdt+0tfBl(VBlu)Rudt\int_0^{t_f} VI dt = \int_0^{t_f} I^2 R dt + \int_0^{t_f} \frac{Bl(V-Blu)}{R} u dt. 0tfVIdt=Ediss+0tfBlVuB2l2u2Rdt\int_0^{t_f} VI dt = E_{diss} + \int_0^{t_f} \frac{BlVu - B^2l^2u^2}{R} dt. The term 0tfBlVuRdt\int_0^{t_f} \frac{BlVu}{R} dt can be related to the work done by the magnetic force. Consider the work-energy theorem: Work done by battery = Change in KE + Energy dissipated. Wbattery=ΔKE+EdissW_{battery} = \Delta KE + E_{diss}. The total work done by the battery is Wbattery=VIdtW_{battery} = \int V I dt. The induced emf is Eind=Blu\mathcal{E}_{ind} = Blu. The net emf is VBluV - Blu. The current is I=VBluRI = \frac{V-Blu}{R}. The work done by the battery is Wbattery=0tfVVBluRdtW_{battery} = \int_0^{t_f} V \frac{V-Blu}{R} dt. The energy dissipated is Ediss=0tfI2Rdt=0tf(VBlu)2RdtE_{diss} = \int_0^{t_f} I^2 R dt = \int_0^{t_f} \frac{(V-Blu)^2}{R} dt. The change in kinetic energy is ΔKE=12mu2\Delta KE = \frac{1}{2}mu^2. We have mdudt=Bl(VBlu)Rm \frac{du}{dt} = \frac{Bl(V-Blu)}{R}. mududt=BlVuB2l2u2Rm u \frac{du}{dt} = \frac{BlVu - B^2l^2u^2}{R}. Integrating from t=0t=0 to tft_f: 0tfmududtdt=0tfBlVuB2l2u2Rdt\int_0^{t_f} m u \frac{du}{dt} dt = \int_0^{t_f} \frac{BlVu - B^2l^2u^2}{R} dt. 12mu2=0tfBlVuRdt0tfB2l2u2Rdt\frac{1}{2} m u^2 = \int_0^{t_f} \frac{BlVu}{R} dt - \int_0^{t_f} \frac{B^2l^2u^2}{R} dt. Let's consider the work done by the battery: Wbatt=0tfVIdt=0tfVVBluRdtW_{batt} = \int_0^{t_f} V I dt = \int_0^{t_f} V \frac{V-Blu}{R} dt. Wbatt=0tfV2Rdt0tfVBluRdtW_{batt} = \int_0^{t_f} \frac{V^2}{R} dt - \int_0^{t_f} \frac{VBlu}{R} dt. The term 0tfVBluRdt\int_0^{t_f} \frac{VBlu}{R} dt is the work done against the induced emf. We know Ediss=WbattΔKEE_{diss} = W_{batt} - \Delta KE. Ediss=0tfVIdt12mu2E_{diss} = \int_0^{t_f} VI dt - \frac{1}{2}mu^2. Also, Ediss=0tfI2RdtE_{diss} = \int_0^{t_f} I^2 R dt. Consider the power balance: VI=I2R+FuVI = I^2R + F u. VI=I2R+BlIR(BlI/m)=I2R+B2l2I2mRVI = I^2R + \frac{BlI}{R} (BlI/m) = I^2R + \frac{B^2l^2I^2}{mR}. This is incorrect. VI=I2R+Bl(VBlu)RuVI = I^2R + \frac{Bl(V-Blu)}{R} u. VI=I2R+BlVuB2l2u2RVI = I^2R + \frac{BlVu - B^2l^2u^2}{R}. Integrate over time: VIdt=I2Rdt+BlVuB2l2u2Rdt\int VI dt = \int I^2R dt + \int \frac{BlVu - B^2l^2u^2}{R} dt. Wbatt=Ediss+BlVuB2l2u2RdtW_{batt} = E_{diss} + \int \frac{BlVu - B^2l^2u^2}{R} dt. We have 12mu2=BlVuRdtB2l2u2Rdt\frac{1}{2}mu^2 = \int \frac{BlVu}{R} dt - \int \frac{B^2l^2u^2}{R} dt. Substitute BlVuRdt=12mu2+B2l2u2Rdt\int \frac{BlVu}{R} dt = \frac{1}{2}mu^2 + \int \frac{B^2l^2u^2}{R} dt into the WbattW_{batt} equation. Wbatt=Ediss+(12mu2+B2l2u2Rdt)B2l2u2RdtW_{batt} = E_{diss} + \left(\frac{1}{2}mu^2 + \int \frac{B^2l^2u^2}{R} dt\right) - \int \frac{B^2l^2u^2}{R} dt. Wbatt=Ediss+12mu2W_{batt} = E_{diss} + \frac{1}{2}mu^2. This is the work-energy theorem. We need to evaluate Wbatt=0tfVIdtW_{batt} = \int_0^{t_f} VI dt. Wbatt=0tfVVBluRdt=1R0tf(V2BluV)dtW_{batt} = \int_0^{t_f} V \frac{V-Blu}{R} dt = \frac{1}{R} \int_0^{t_f} (V^2 - BluV) dt. From mdudt=BlVRB2l2Rum \frac{du}{dt} = \frac{BlV}{R} - \frac{B^2l^2}{R} u, we have dt=mRBlVB2l2ududt = \frac{mR}{BlV - B^2l^2u} du. Wbatt=0uVVBluRmRBlVB2l2uduW_{batt} = \int_0^u V \frac{V-Bl u'}{R} \frac{mR}{BlV - B^2l^2u'} du'. Wbatt=0uV(VBlu)BlVB2l2uduW_{batt} = \int_0^u \frac{V(V-Bl u')}{BlV - B^2l^2u'} du'. Wbatt=0uV(VBlu)Bl(VBlu)duW_{batt} = \int_0^u \frac{V(V-Bl u')}{Bl(V - Blu')} du'. Let x=VBlux = V - Blu'. dx=Bldudx = -Bl du'. du=dx/Bldu' = -dx/Bl. When u=0u'=0, x=Vx=V. When u=uu'=u, x=VBlux=V-Blu. Wbatt=VVBluV(x)Bl(x)(dxBl)=V(Bl)2VVBludx=V(Bl)2[x]VVBluW_{batt} = \int_V^{V-Blu} \frac{V(x)}{Bl(x)} (-\frac{dx}{Bl}) = -\frac{V}{(Bl)^2} \int_V^{V-Blu} dx = -\frac{V}{(Bl)^2} [x]_V^{V-Blu}. Wbatt=V(Bl)2(VBluV)=V(Bl)2(Blu)=VBlu(Bl)2=VuBlW_{batt} = -\frac{V}{(Bl)^2} (V-Blu - V) = -\frac{V}{(Bl)^2} (-Blu) = \frac{VBlu}{(Bl)^2} = \frac{Vu}{Bl}. So, Wbatt=mVuBlW_{batt} = \frac{mVu}{Bl}. Then, Ediss=WbattΔKE=mVuBl12mu2E_{diss} = W_{batt} - \Delta KE = \frac{mVu}{Bl} - \frac{1}{2}mu^2.