Solveeit Logo

Question

Question: A rectangle is inscribed in an equilateral triangle of side length '2a' units. Maximum area of this ...

A rectangle is inscribed in an equilateral triangle of side length '2a' units. Maximum area of this rectangle can be

A

3a2\sqrt { 3 } a ^ { 2 }

B
C

a2

D
Answer
Explanation

Solution

Let BD = x ⇒ BC1 = (a - x) ⇒ BC = (a – x)tan π3\frac { \pi } { 3 }

Now area of rectangle ABCD,

∆ = (AB) (BC) = 232 \sqrt { 3 } × (a − x)

Δ23(x+ax2)2\Delta \leq 2 \sqrt { 3 } \left( \frac { x + a - x } { 2 } \right) ^ { 2 }

=(using A. M. ≥ G.M.)