Question
Quantitative Aptitude Question on Geometry
A rectangle ABCD has sides AB=45cm and BC=26cm. Point E is the midpoint of side CD. Find the radius of the incircle of the triangle △AED.
Rectangle ABCD with sides:
AB=45cm,BC=26cm.
E is the midpoint of CD, so:
CE=ED=2CD=245=22.5cm.
Coordinates of points:
A(0,0),B(45,0),D(0,26),C(45,26),E(22.5,26).
Step 1: Calculate the lengths of the sides of △AED
1. Length of AE:
AE=(22.5−0)2+(26−0)2=22.52+262.
Simplifying:
AE=506.25+676=1182.25≈34.39cm.
2. Length of ED:
ED=22.5cm.
3. Length of AD:
AD=26cm.
Step 2: Calculate the area of △AED
Using Heron's formula, the semi-perimeter (s) is:
s=2AE+ED+AD=234.39+22.5+26=41.445cm.
The area (Δ) is given by:
Δ=s(s−AE)(s−ED)(s−AD).
Substitute the values:
Δ=41.445⋅(41.445−34.39)⋅(41.445−22.5)⋅(41.445−26).
Simplify each term:
Δ=41.445⋅7.055⋅18.945⋅15.445.
Δ≈85952.84≈293.17cm2.
**Step 3: Radius of the incircle **
The radius of the incircle (r) is given by:
r=sΔ.
Substitute the values:
r=41.445293.17≈7.07cm.
Solution
Rectangle ABCD with sides:
AB=45cm,BC=26cm.
E is the midpoint of CD, so:
CE=ED=2CD=245=22.5cm.
Coordinates of points:
A(0,0),B(45,0),D(0,26),C(45,26),E(22.5,26).
Step 1: Calculate the lengths of the sides of △AED
1. Length of AE:
AE=(22.5−0)2+(26−0)2=22.52+262.
Simplifying:
AE=506.25+676=1182.25≈34.39cm.
2. Length of ED:
ED=22.5cm.
3. Length of AD:
AD=26cm.
Step 2: Calculate the area of △AED
Using Heron's formula, the semi-perimeter (s) is:
s=2AE+ED+AD=234.39+22.5+26=41.445cm.
The area (Δ) is given by:
Δ=s(s−AE)(s−ED)(s−AD).
Substitute the values:
Δ=41.445⋅(41.445−34.39)⋅(41.445−22.5)⋅(41.445−26).
Simplify each term:
Δ=41.445⋅7.055⋅18.945⋅15.445.
Δ≈85952.84≈293.17cm2.
**Step 3: Radius of the incircle **
The radius of the incircle (r) is given by:
r=sΔ.
Substitute the values:
r=41.445293.17≈7.07cm.