Question
Mathematics Question on Relations and functions
A real valued function f(x).Satisfies the functional equation f(x−y)=f(x)f(y)−f(a−x)f(a+y) where a is a given constant and f(0)=1. Then f(2a−x) is equal to
A
f(−x)
B
f(a)+f(a−x)
C
f(x)
D
−f(x)
Answer
−f(x)
Explanation
Solution
f(x−y)=f(x)f(y)−f(a−x)f(a+y) Put x=0=y. ∴f(0)=f(0)f(0)−f(a)f(a)=(f(0))2−(f(a))2 ⇒1=1−(f(a))2⇒f(a)=0 Now f(2a−x)=f(a−(x−a)) =f(a)f(x−a)−f(a−a)f(a+x−a) 0⋅f(x−a)−f(0)f(x) =0−1.f(x)=−f(x).