Solveeit Logo

Question

Mathematics Question on Relations and functions

A real valued function f(x)f (x) .Satisfies the functional equation f(xy)=f(x)f(y)f(ax)f(a+y)f(x- y) =f (x) f(y)-f(a-x) f(a+y) where a is a given constant and f(0)=1f(0) = 1. Then f(2ax)f(2a - x) is equal to

A

f(x)f(-x)

B

f(a)+f(ax)f(a)+f(a-x)

C

f(x)f(x)

D

f(x)-f(x)

Answer

f(x)-f(x)

Explanation

Solution

f(xy)=f(x)f(y)f(ax)f(a+y)f(x - y) = f(x) f (y) - f (a - x) f (a + y) Put x=0=yx = 0 = y. f(0)=f(0)f(0)f(a)f(a)=(f(0))2(f(a))2\therefore \:\: f(0) = f(0) f(0) -f(a) f(a) = (f(0))^2 - (f (a))^2 1=1(f(a))2f(a)=0\Rightarrow 1= 1-(f(a))^2 \Rightarrow f(a) = 0 Now f(2ax)=f(a(xa))f(2a-x) = f(a - (x - a)) =f(a)f(xa)f(aa)f(a+xa)= f(a)f(x - a)-f(a- a) f(a + x - a) 0f(xa)f(0)f(x)0\cdot f(x-a)-f(0) f(x) =01.f(x)=f(x)= 0 - 1. f(x) = - f(x) .