Solveeit Logo

Question

Question: A real valued function \[f\left( x \right)\] satisfies the functional equation \[f\left( {x - y} \ri...

A real valued function f(x)f\left( x \right) satisfies the functional equation f(xy)=f(x)f(y)f(ax)f(a+y)f\left( {x - y} \right) = f\left( x \right)f\left( y \right) - f\left( {a - x} \right)f\left( {a + y} \right) where aa is a given constant and f(0)=1,f(2ax)f\left( 0 \right) = 1,f\left( {2a - x} \right) is equal to
A. f(x)f\left( { - x} \right)
B. f(a)+f(ax)f\left( a \right) + f\left( {a - x} \right)
C. f(x)f\left( x \right)
D. f(x) - f\left( x \right)

Explanation

Solution

Hint : First of all, substitute x=y=0x = y = 0 so that we can use the value of f(0)=1f\left( 0 \right) = 1 to simplify the given function and to get the value of f(a)f\left( a \right). Then use the value of f(xy)f\left( {x - y} \right) to simplify and get the solution of f(2ax)f\left( {2a - x} \right). So, use this concept to reach the solution of the given problem.

Complete step by step solution :
Given f(xy)=f(x)f(y)f(ax)f(a+y)......................................................(1)f\left( {x - y} \right) = f\left( x \right)f\left( y \right) - f\left( {a - x} \right)f\left( {a + y} \right)......................................................\left( 1 \right)
Also, given that f(0)=1f\left( 0 \right) = 1
Substituting x=y=0x = y = 0 in equation (1)\left( 1 \right), we have

f(00)=f(0)f(0)f(a0)f(a+0) f(0)=f(0)f(0)f(a)f(a) [f(0)=1] 1=1×1(f(a))2 1=1(f(a))2 (f(a))2=11=0 f(a)=0  \Rightarrow f\left( {0 - 0} \right) = f\left( 0 \right)f\left( 0 \right) - f\left( {a - 0} \right)f\left( {a + 0} \right) \\\ \Rightarrow f\left( 0 \right) = f\left( 0 \right)f\left( 0 \right) - f\left( a \right)f\left( a \right){\text{ }}\left[ {f\left( 0 \right) = 1} \right] \\\ \Rightarrow 1 = 1 \times 1 - {\left( {f\left( a \right)} \right)^2} \\\ \Rightarrow 1 = 1 - {\left( {f\left( a \right)} \right)^2} \\\ \Rightarrow {\left( {f\left( a \right)} \right)^2} = 1 - 1 = 0 \\\ \therefore f\left( a \right) = 0 \\\

Now, consider

f(2ax)=f(a(xa)) f(2ax)=f(a)f(xa)f(aa)f(a+xa) [from equation (1)] f(2ax)=(0)f(xa)f(0)f(a+xa) [f(a)=0] f(2ax)=01×f(x) [f(0)=1] f(2ax)=f(x)  \Rightarrow f\left( {2a - x} \right) = f\left( {a - \left( {x - a} \right)} \right) \\\ \Rightarrow f\left( {2a - x} \right) = f\left( a \right)f\left( {x - a} \right) - f\left( {a - a} \right)f\left( {a + x - a} \right){\text{ }}\left[ {{\text{from equation }}\left( 1 \right)} \right] \\\ \Rightarrow f\left( {2a - x} \right) = (0)f\left( {x - a} \right) - f\left( 0 \right)f\left( {a + x - a} \right){\text{ }}\left[ {f\left( a \right) = 0} \right] \\\ \Rightarrow f\left( {2a - x} \right) = 0 - 1 \times f\left( x \right){\text{ }}\left[ {f\left( 0 \right) = 1} \right] \\\ \therefore f\left( {2a - x} \right) = - f\left( x \right) \\\

Thus, the correct option is D. f(x) - f\left( x \right)

Note : In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain.