Solveeit Logo

Question

Question: A real value of x will satisfy the equation \(|z| = 1\) \(|z| > 1\) if....

A real value of x will satisfy the equation z=1|z| = 1 z>1|z| > 1 if.

A

z1=z2=..........=zn=1,|z_{1}| = |z_{2}| = .......... = |z_{n}| = 1,

B

z1+z2+z3+.............+zn|z_{1} + z_{2} + z_{3} + ............. + z_{n}|

C

z1+z2+.......+zn|z_{1}| + |z_{2}| + ....... + |z_{n}|

D

1z1+1z2+.........+1zn\left| \frac{1}{z_{1}} + \frac{1}{z_{2}} + ......... + \frac{1}{z_{n}} \right|

Answer

z1+z2+.......+zn|z_{1}| + |z_{2}| + ....... + |z_{n}|

Explanation

Solution

argz=5π6=150oargz = \frac{5\pi}{6} = 150^{o}. Taking modulus and squaring on both sides, z=x+iyz = x + iy.