Solveeit Logo

Question

Question: A RC circuit has an emf of \(300\cos (2t)\) volts, a resistance of \(150ohms\), a capacitance of \(\...

A RC circuit has an emf of 300cos(2t)300\cos (2t) volts, a resistance of 150ohms150ohms, a capacitance of 1600farad\dfrac{1}{{600}}farad, and an initial charge on the capacitor of 5C5C. Find the charge on the capacitor at any time tt.
A. 25(23e4t+sin(2t)+2cos(2t))\dfrac{2}{5}(23{e^{ - 4t}} + \sin (2t) + 2\cos (2t))
B. 15(23e4t+sin(2t)+2cos(2t))\dfrac{1}{5}(23{e^{ - 4t}} + \sin (2t) + 2\cos (2t))
C. 35(23e4t+sin(2t)+2cos(2t))\dfrac{3}{5}(23{e^{ - 4t}} + \sin (2t) + 2\cos (2t))
D. 16(23e4t+sin(2t)+2cos(2t))\dfrac{1}{6}(23{e^{ - 4t}} + \sin (2t) + 2\cos (2t))

Explanation

Solution

Use the circuit equation. Substitute the given values in it and integrate to find the charge. Use the formula of integration by parts to solve it.

Formula used:
E=dqdtR+qCE = \dfrac{{dq}}{{dt}}R + \dfrac{q}{C}
Where,
EE is emf
dqdt\dfrac{{dq}}{{dt}} is current
RR is the resistance
qq is the charge
CC is capacitance

Complete step by step answer:
We know that, a circuit equation is given by
E=dqdtR+qCE = \dfrac{{dq}}{{dt}}R + \dfrac{q}{C}
Where,
EE is emf
dqdt=i\dfrac{{dq}}{{dt}} = i is current
RR is the resistance
qq is the charge
CC is capacitance
It is given to us that,
E=300cos(2t)voltE = 300\cos (2t)volt
R=150ohmR = 150ohm
C=1600faradC = \dfrac{1}{{600}}farad
Substitute the given values in the above equation. We get
300cos(2t)=150dqdt+600q300\cos (2t) = 150\dfrac{{dq}}{{dt}} + 600q
Rearranging it we can write
dqdt+4q=2cos(2t)\dfrac{{dq}}{{dt}} + 4q = 2\cos (2t) . . . (1)
This is linear equation in terms of qq and tt
Integrating factor:
IF=e4dt=e4tIF = {e^{\int {4dt} }} = {e^{4t}}
The solution of equation (1) can be written as
q×IF=IF×2cos(2t)dtq \times IF = \int {IF \times 2\cos (2t)dt}
qe4t=2e4tcos(2t)dt\Rightarrow q{e^{4t}} = 2\int {{e^{4t}}\cos (2t)dt} . . . (1)
By using ILATE rule, we can expand the integration using the formula
I×IIdx=IIIdx[ddxIIIdx]dx+C\int {I \times IIdx = I\int {IIdx - \int {\left[ {\dfrac{d}{{dx}}I\int {IIdx} } \right]dx} } } + C
qe4t=2[cos(2t)e4tdt[ddtcos(2t)e4tdt]dt]+C\Rightarrow q{e^{4t}} = 2\left[ {\cos (2t)\int {{e^{4t}}dt - \int {\left[ {\dfrac{d}{{dt}}\cos (2t)\int {{e^{4t}}dt} } \right]dt} } } \right] + C
=2[cos(2t)e4t42sin(2t)×e4t4]+C= 2\left[ {\cos (2t)\dfrac{{{e^{4t}}}}{4} - 2\int { - \sin (2t)} \times \dfrac{{{e^{4t}}}}{4}} \right] + C
=2[cos(2t)e4t4+24sin(2t)×e4tdt]+C= 2\left[ {\cos (2t)\dfrac{{{e^{4t}}}}{4} + \dfrac{2}{4}\int {\sin (2t)} \times {e^{4t}}dt} \right] + C
=2[cos(2t)e4t4+12[sin(2t)e4t4cos(2t)2e4t4dt]]+C= 2\left[ {\cos (2t)\dfrac{{{e^{4t}}}}{4} + \dfrac{1}{2}\left[ {\sin (2t)\dfrac{{{e^{4t}}}}{4} - \int {\dfrac{{\cos (2t)}}{2}\dfrac{{{e^{4t}}}}{4}} dt} \right]} \right] + C
=2[cos(2t)e4t4+18sin(2t)e4t116cos(2t)e4tdt]+C= 2\left[ {\cos (2t)\dfrac{{{e^{4t}}}}{4} + \dfrac{1}{8}\sin (2t){e^{4t}} - \dfrac{1}{{16}}\int {\cos (2t){e^{4t}}} dt} \right] + C
qe4t=2[cos(2t)e4t4+18sin(2t)e4t116qe4t]+C\Rightarrow q{e^{4t}} = 2\left[ {\cos (2t)\dfrac{{{e^{4t}}}}{4} + \dfrac{1}{8}\sin (2t){e^{4t}} - \dfrac{1}{{16}}q{e^{4t}}} \right] + C
qe4t=12cos(2t)e4t+14sin(2t)e4t18qe4t+C\Rightarrow q{e^{4t}} = \dfrac{1}{2}\cos (2t){e^{4t}} + \dfrac{1}{4}\sin (2t){e^{4t}} - \dfrac{1}{8}q{e^{4t}} + C
qe4t+18qe4t=12cos(2t)e4t+14sin(2t)e4t+C\Rightarrow q{e^{4t}} + \dfrac{1}{8}q{e^{4t}} = \dfrac{1}{2}\cos (2t){e^{4t}} + \dfrac{1}{4}\sin (2t){e^{4t}} + C
98qe4t=12cos(2t)e4t+14sin(2t)e4t+C\Rightarrow \dfrac{9}{8}q{e^{4t}} = \dfrac{1}{2}\cos (2t){e^{4t}} + \dfrac{1}{4}\sin (2t){e^{4t}} + C . . . (2)
Let the initial charge be q0=5C{q_0} = 5C when t=0t = 0
Substitute the given values in the above equation. We get
98×5e0=12cos(0)e0+14sin(0)e0+C\Rightarrow \dfrac{9}{8} \times 5{e^0} = \dfrac{1}{2}\cos (0){e^0} + \dfrac{1}{4}\sin (0){e^0} + C
458=12+C\Rightarrow \dfrac{{45}}{8} = \dfrac{1}{2} + C
Rearranging it we can write
C=45812C = \dfrac{{45}}{8} - \dfrac{1}{2}
C=4548\Rightarrow C = \dfrac{{45 - 4}}{8}
C=418\Rightarrow C = \dfrac{{41}}{8}
Therefore, equation (2) becomes
98qe4t=12cos(2t)e4t+14sin(2t)e4t+418\Rightarrow \dfrac{9}{8}q{e^{4t}} = \dfrac{1}{2}\cos (2t){e^{4t}} + \dfrac{1}{4}\sin (2t){e^{4t}} + \dfrac{{41}}{8}
Simplifying it, we get
q=15(23e4t+sin(2t)+2cos(2t))q = \dfrac{1}{5}(23{e^{ - 4t}} + \sin (2t) + 2\cos (2t))
Therefore, from the above explanation, the correct answer is, option (B) 15(23e4t+sin(2t)+2cos(2t))\dfrac{1}{5}(23{e^{ - 4t}} + \sin (2t) + 2\cos (2t))

Note: We integrated equation (1) using the formula called integral by parts. You cannot integrate the product of two functions normally. You need to follow the ILATE rule for that. ILATE is short for, INVERSE, LOGARITHMIC, ALGEBRAIC, TRIGONOMETRIC, EXPONENTIAL function. The first function and the second function is chosen on the basis of the decreasing priority in the word ILATE. Once, you decide the first and the second function, then you can use the formula we discussed in the solution.