Solveeit Logo

Question

Physics Question on Ray optics and optical instruments

A ray of light strikes a transparent rectangular slab of refractive index 2\sqrt 2 at an angle of incidence of 4545^{\circ}. The angle between the reflected and refracted rays is

A

7575^{\circ}

B

9090^{\circ}

C

105105^{\circ}

D

120120^{\circ}

Answer

105105^{\circ}

Explanation

Solution

Applying Snell's law at air-glass surface, we get 1sini=2sinr1sin i = \sqrt{2} sin r' sinr=12sinisin r' = \frac{1}{\sqrt{2}} sin i =12sin45(i=45)= \frac{1}{\sqrt{2}} sin 45^{\circ} \left(\because i = 45^{\circ}\right) sinr=12\Rightarrow sin r' = \frac{1}{2} or r=sin1(12)=30r' = sin^{-1}\left(\frac{1}{2}\right) = 30 ^{\circ} From figure, i+θ+30=180(i=r=45)i + \theta +30^{\circ} = 180^{\circ} \quad (\because i = r = 45^{\circ}) 45+θ+30=18045^{\circ} + \theta + 30^{\circ} = 180^{\circ} or θ=18075=105\theta = 180^{\circ} - 75^{\circ} = 105^{\circ} Hence, the angle between reflected and refracted rays is 105105^{\circ}