Solveeit Logo

Question

Question: A ray of light passes from vacuum into a medium of refractive index μ, the angle of incidence is fou...

A ray of light passes from vacuum into a medium of refractive index μ, the angle of incidence is found to be twice the angle of refraction. Then the angle of incidence is

A

cos1(μ/2)\cos ^ { - 1 } ( \mu / 2 )

B

2cos1(μ/2)2 \cos ^ { - 1 } ( \mu / 2 )

C

2sin1(μ)2 \sin ^ { - 1 } ( \mu )

D

2sin1(μ/2)2 \sin ^ { - 1 } ( \mu / 2 )

Answer

2cos1(μ/2)2 \cos ^ { - 1 } ( \mu / 2 )

Explanation

Solution

By using μ=sinisinr\mu = \frac { \sin i } { \sin r } μ=sin2rsinr=2sinrcosrsinr\mu = \frac { \sin 2 r } { \sin r } = \frac { 2 \sin r \cos r } { \sin r }

(sin2θ=2sinθcosθ\sin 2 \theta = 2 \sin \theta \cos \theta)

r=cos1(μ2)r = \cos ^ { - 1 } \left( \frac { \mu } { 2 } \right).

So, i=2r=2cos1(μ2)i = 2 r = 2 \cos ^ { - 1 } \left( \frac { \mu } { 2 } \right).