Solveeit Logo

Question

Question: A ray of light is incident to the hypotenuse of a right-angled prism after travelling parallel to th...

A ray of light is incident to the hypotenuse of a right-angled prism after travelling parallel to the base inside the prism. If μ\mu is the refractive index of the material of the prism, the maximum value of the base angle for which light is totally reflected from the hypotenuse is

A

sin1(1μ)\sin ^ { - 1 } \left( \frac { 1 } { \mu } \right)

B

tan1(1μ)\tan ^ { - 1 } \left( \frac { 1 } { \mu } \right)

C

sin1(μ1μ)\sin ^ { - 1 } \left( \frac { \mu - 1 } { \mu } \right)

D

cos1(1μ)\cos ^ { - 1 } \left( \frac { 1 } { \mu } \right)

Answer

cos1(1μ)\cos ^ { - 1 } \left( \frac { 1 } { \mu } \right)

Explanation

Solution

If α=\alpha = maximum value of vase angle for which light is totally reflected from hypotenuse.

(90α)=C=( 90 - \alpha ) = C =minimum value of angle of incidence an hypotenuse for TIR

sin(90α)=sinC=1μ\sin ( 90 - \alpha ) = \sin C = \frac { 1 } { \mu } \Rightarrow α=cos1(1μ)\alpha = \cos ^ { - 1 } \left( \frac { 1 } { \mu } \right)