Solveeit Logo

Question

Question: A ray of light is incident on a thick slab of glass of thickness t as shown in the figure. The emerg...

A ray of light is incident on a thick slab of glass of thickness t as shown in the figure. The emergent ray is parallel to the incident ray but displaced sideways by a distance d. If the angles are small then d is, :

A

B

C

D

t(1ri)\mathrm { t } \left( 1 - \frac { \mathrm { r } } { \mathrm { i } } \right)

Answer

Explanation

Solution

:

From figure, in right angled ΔCDB\Delta \mathrm { CDB }

sin(ir)=CDBC=dBC\therefore \sin ( \mathrm { i } - \mathrm { r } ) = \frac { \mathrm { CD } } { \mathrm { BC } } = \frac { \mathrm { d } } { \mathrm { BC } }

or d = BC sin (i – r) …(i)

Also, in right angled ΔCNB\Delta \mathrm { CNB }

cosr=BNBC=tBC\cos \mathrm { r } = \frac { \mathrm { BN } } { \mathrm { BC } } = \frac { \mathrm { t } } { \mathrm { BC } }

BC=tcosr\mathrm { BC } = \frac { \mathrm { t } } { \cos \mathrm { r } } …(ii)

Substitute equation (ii) in equation (i), we get

d=tcosrsin(ir)\mathrm { d } = \frac { \mathrm { t } } { \cos \mathrm { r } } \sin ( \mathrm { i } - \mathrm { r } )

For small angles sin (ir)ir;cosr1( \mathrm { i } - \mathrm { r } ) \approx \mathrm { i } - \mathrm { r } ; \cos \mathrm { r } \approx 1

d=t(ir),d=it[1ri]\mathrm { d } = \mathrm { t } ( \mathrm { i } - \mathrm { r } ) , \mathrm { d } = \mathrm { it } \left[ 1 - \frac { \mathrm { r } } { \mathrm { i } } \right]