Solveeit Logo

Question

Physics Question on Ray optics and optical instruments

A ray of light enters from a rarer to a denser medium. The angle of incidence is ii. Then the reflected and refracted rays are mutually perpendicular to each other. The critical angle for the pair of media is

A

Sin1(Tani)Sin^ {-1}(Tan \,i)

B

Tan1(Sini)Tan^{-1} (Sin\,i)

C

Sin1(Coti)Sin^{-1} (Cot\,i)

D

Cos1(Tani)Cos^{-1} (Tan\,i)

Answer

Sin1(Coti)Sin^{-1} (Cot\,i)

Explanation

Solution

From law of reflection, i=r...(i)\angle i=\angle r\,\,\,\,\,\,\,\,\,\,\,...(i)
and sinrsini=μdμr...(ii)\frac{\sin r^{\prime}}{\sin i}=\frac{\mu_{d}}{\mu_{r}}\,\,\,\,\,\,\,\,\,\,...(ii)
r+r+90=180r+r'+90^{\circ}=180^{\circ}
r+r=90\Rightarrow \,\,\,\, r+r^{\prime}=90^{\circ}
or i+r=90\,\,\,\,\,i+r'=90^{\circ}
r=(90i)...(iii)r'=\left(90^{\circ}-i\right)\,\,\,\,\,\,\,\,\,\,\,...(iii)
From E (ii) sin(90i)sini=μdμr\frac{\sin \left(90^{\circ}-i\right)}{\sin i}=\frac{\mu_{d}}{\mu_{r}}
or cosisini=μdμrcoti=μdμr\,\,\,\,\,\frac{\cos i}{\sin i}=\frac{\mu_{d}}{\mu_{r}} \Rightarrow \cot i=\frac{\mu_{d}}{\mu_{r}}
But μdμr=sinC\frac{\mu_{d}}{\mu_{r}}=\sin C (where CC is critical angle)
coti=sinC\therefore \,\,\,\,\, \cot i=\sin C
C=sin1(coti)\Rightarrow C=\sin ^{-1}(\cot i)