Solveeit Logo

Question

Question: A ray of light enters at grazing angle of incidence into an assembly of three isosceles right-angled...

A ray of light enters at grazing angle of incidence into an assembly of three isosceles right-angled prisms having refractive indices μ1=2{\mu _1} = \sqrt 2 ,μ2=x{\mu _2} = \sqrt x and μ3=3{\mu _3} = \sqrt 3 . If finally an emergent light ray also emerges at gazing angle then calculate x.

A) 5
B) 3
C) 2
D) 1

Explanation

Solution

The speed of light is different in different mediums and due to which the when a ray of light enters from one medium into another medium then the ray of light bends from the normal to the medium also speed of light of the medium depends upon the refractive index of the respective medium.

Complete step by step answer:
The Snell’s law is given by,sini1sinr1=μ1\dfrac{{\sin {i_1}}}{{\sin {r_1}}} = {\mu _1}
As the angle of incidence is9090^\circ as the refractive index of the air is 1.
sini1sinr1=μ1\Rightarrow \dfrac{{\sin {i_1}}}{{\sin {r_1}}} = {\mu _1}
sinr1=sini1μ1\Rightarrow \sin {r_1} = \dfrac{{\sin {i_1}}}{{{\mu _1}}}
sinr1=sin902\Rightarrow \sin {r_1} = \dfrac{{\sin 90^\circ }}{{\sqrt 2 }}(as the value of the i1=90{i_1} = 90^\circ )
sinr1=12\Rightarrow \sin {r_1} = \dfrac{1}{{\sqrt 2 }}(Since the value of sin90\sin 90^\circ is equal to 1)
r1=sin112\Rightarrow {r_1} = {\sin ^{ - 1}}\dfrac{1}{{\sqrt 2 }}
r1=45\Rightarrow {r_1} = 45^\circ(as the angle of sin45\sin 45^\circ is equal to 12\dfrac{1}{{\sqrt 2 }})
Applying the Snell’s law for the second surface,
sini2sinr2=μ2μ1\Rightarrow \dfrac{{\sin {i_2}}}{{\sin {r_2}}} = \dfrac{{{\mu _2}}}{{{\mu _1}}}
Since sini2=cosr1\sin {i_2} = \cos {r_1}
cosr1sinr2=μ22\Rightarrow \dfrac{{\cos {r_1}}}{{\sin {r_2}}} = \dfrac{{{\mu _2}}}{{\sqrt 2 }}(as the value of μ3=2{\mu _3} = \sqrt 2 )
2cosr1=μ2sinr2\Rightarrow \sqrt 2 \cos {r_1} = {\mu _2}\sin {r_2}
sinr2=2μ2(cos45)\Rightarrow \sin {r_2} = \dfrac{{\sqrt 2 }}{{{\mu _2}}} \cdot \left( {\cos 45^\circ } \right) (as the value of r1=45{r_1} = 45^\circ )
sinr2=1μ2\Rightarrow \sin {r_2} = \dfrac{1}{{{\mu _2}}}………eq. (1)
Snell’s law for the third surface.
sini3sinr3=μ3μ2\Rightarrow \dfrac{{\sin {i_3}}}{{\sin {r_3}}} = \dfrac{{{\mu _3}}}{{{\mu _2}}}
sini3sinr3=3μ2\Rightarrow \dfrac{{\sin {i_3}}}{{\sin {r_3}}} = \dfrac{{\sqrt 3 }}{{{\mu _2}}}(as the value of μ3=3{\mu _3} = \sqrt 3 )
Sincesini3=cosr2\sin {i_3} = \cos {r_2}, therefore we get
cosr2sinr3=3μ2\Rightarrow \dfrac{{\cos {r_2}}}{{\sin {r_3}}} = \dfrac{{\sqrt 3 }}{{{\mu _2}}}
sinr3=μ21sinr22μ3\Rightarrow \sin {r_3} = \dfrac{{{\mu _2}\sqrt {1 - \sin {r_2}^2} }}{{{\mu _3}}} (Since cosr2=1sin2r2\cos {r_2} = \sqrt {1 - {{\sin }^2}{r_2}} )
sinr3=μ21(1μ2)23\Rightarrow \sin {r_3} = \dfrac{{{\mu _2}\sqrt {1 - {{\left( {\dfrac{1}{{{\mu _2}}}} \right)}^2}} }}{{\sqrt 3 }}(replacing the value of sinr2\sin {r_2}from equation (1))
sinr3=μ2μ221μ223\Rightarrow \sin {r_3} = \dfrac{{{\mu _2}\sqrt {\dfrac{{{\mu _2}^2 - 1}}{{{\mu _2}^2}}} }}{{\sqrt 3 }}(Taking L.C.M)
sinr3=μ2213\Rightarrow \sin {r_3} = \dfrac{{\sqrt {{\mu _2}^2 - 1} }}{{\sqrt 3 }}………eq. (2)
For the fourth interface, Snell’s law would be,
sini4sinr4=μ4μ3\Rightarrow \dfrac{{\sin {i_4}}}{{\sin {r_4}}} = \dfrac{{{\mu _4}}}{{{\mu _3}}}
sini4sin90=13\Rightarrow \dfrac{{\sin {i_4}}}{{\sin 90^\circ }} = \dfrac{1}{{\sqrt 3 }}(As the value of r4=90{r_4} = 90^\circ also the value ofμ3=3{\mu _3} = \sqrt 3 )
sini4=13\Rightarrow \sin {i_4} = \dfrac{1}{{\sqrt 3 }}
Also,sini4=cosr3\sin {i_4} = \cos {r_3},
cosr3=13\Rightarrow \cos {r_3} = \dfrac{1}{{\sqrt 3 }}………eq. (3)
We know that,
sin2r3+cos2r3=1\Rightarrow {\sin ^2}{r_3} + {\cos ^2}{r_3} = 1
Replace the value of sinr3\sin {r_3} and cosr3\cos {r_3} from equation (2) and equation (3) in above equation.
sin2r3+cos2r3=1\Rightarrow {\sin ^2}{r_3} + {\cos ^2}{r_3} = 1
[μ2213]2+(13)2=1\Rightarrow {\left[ {\dfrac{{\sqrt {{\mu _2}^2 - 1} }}{{\sqrt 3 }}} \right]^2} + {\left( {\dfrac{1}{{\sqrt 3 }}} \right)^2} = 1
On simplification,
μ2213+13=1\Rightarrow \dfrac{{{\mu _2}^2 - 1}}{3} + \dfrac{1}{3} = 1
μ221+13=1\Rightarrow \dfrac{{{\mu _2}^2 - 1 + 1}}{3} = 1
On further simplification,
μ223=1\Rightarrow \dfrac{{{\mu _2}^2}}{3} = 1
μ2=3\Rightarrow {\mu _2} = \sqrt 3

Therefore, the value of x=3. So the correct is option B.

Note:
It is advisable for the students to remember Snell’s law as it is a very important topic in ray optics and also the problems like this have to be solved using Snell’s law only. The refractive index of the air is equal to 1.