Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

A ray of light coming from the point P(1,2)P(1, 2) gets reflected from the point QQ on the x-axis and then passes through the point R(4,3)R(4, 3). If the point S(h,k)S(h, k) is such that PQRSPQRS is a parallelogram, then hk2hk^2 is equal to:

A

80

B

90

C

60

D

70

Answer

70

Explanation

Solution

Step 1: Find the reflection point Q The ray reflects at point Q on the x -axis. Let the coordinates of Q be (a,0)(a, 0). Since the ray is reflected, Q lies on the x -axis, and the slope of PQPQ is equal to the negative of the slope of QRQR.

The slope of PQPQ is: slope of PQ=201a=21a.\text{slope of } PQ = \frac{2 - 0}{1 - a} = \frac{2}{1 - a}.

The slope of QRQR is: slope of QR=304a=34a.\text{slope of } QR = \frac{3 - 0}{4 - a} = \frac{3}{4 - a}.

By the law of reflection: 21a=34a.\frac{2}{1 - a} = -\frac{3}{4 - a}.

Cross-multiply to solve for aa: 2(4a)=3(1a).2(4 - a) = -3(1 - a). 82a=3+3a.8 - 2a = -3 + 3a. 8+3=5a.8 + 3 = 5a. a=115.a = \frac{11}{5}.

Thus, QQ is (115,0)\left(\frac{11}{5}, 0\right).

Step 2: Find the coordinates of SS The points P(1,2)P(1, 2), Q(115,0)Q \left(\frac{11}{5}, 0\right), R(4,3)R(4, 3), and S(h,k)S(h, k) form a parallelogram. The diagonals of a parallelogram bisect each other, so the midpoint of PRPR must equal the midpoint of QSQS.

The midpoint of PRPR is: Midpoint of PR=(1+42,2+32)=(52,52).\text{Midpoint of } PR = \left(\frac{1 + 4}{2}, \frac{2 + 3}{2}\right) = \left(\frac{5}{2}, \frac{5}{2}\right).

The midpoint of QSQS is: Midpoint of QS=(115+h2,0+k2).\text{Midpoint of } QS = \left(\frac{\frac{11}{5} + h}{2}, \frac{0 + k}{2}\right).

Equating the midpoints: 115+h2=52,k2=52.\frac{\frac{11}{5} + h}{2} = \frac{5}{2}, \quad \frac{k}{2} = \frac{5}{2}.

Solve for hh and kk: 115+h=5    h=5115=255115=145.\frac{11}{5} + h = 5 \implies h = 5 - \frac{11}{5} = \frac{25}{5} - \frac{11}{5} = \frac{14}{5}. k2=52    k=5.\frac{k}{2} = \frac{5}{2} \implies k = 5.

Thus, SS is (145,5)\left(\frac{14}{5}, 5\right).

Step 3: Calculate hk2hk^2 hk2=(145)(52)=145(25)=70.hk^2 = \left(\frac{14}{5}\right)(5^2) = \frac{14}{5}(25) = 70.

Final Answer: Option (4).