Solveeit Logo

Question

Question: A ray enters a glass sphere of R. I. n = \(\sqrt { 3 }\) at an angle of incidence 60° and is reflect...

A ray enters a glass sphere of R. I. n = 3\sqrt { 3 } at an angle of incidence 60° and is reflected and refracted at the farther surface of the sphere. The angle between the reflected and refracted rays at this surface is

A

500

B

600

C

900

D

400

Answer

900

Explanation

Solution

Refraction at P.

Sin60Sinr1=3\frac { \operatorname { Sin } 60 ^ { \circ } } { \operatorname { Sin } r _ { 1 } } = \sqrt { 3 }

⇒ r1 = 300

Since r2 = r1

∴ r2 = 300

Refraction at Q Sinr2Sini2=13\frac { \operatorname { Sin } r _ { 2 } } { \operatorname { Sin } i _ { 2 } } = \frac { 1 } { \sqrt { 3 } } Putting r2= 300 we obtain i2 = 600

Reflection at Q

α=180(r2+i2)\alpha = 180 ^ { \circ } - \left( r _ { 2 } ^ { \prime } + i _ { 2 } \right)

= 1800- (300+600) = 900