Solveeit Logo

Question

Question: A ratio of the fifth term from the beginning to the \(5^{th}\) term from the end in binomial expansi...

A ratio of the fifth term from the beginning to the 5th5^{th} term from the end in binomial expansion (21/3+12(3)1/3)10{\left( {{2^{1/3}} + \dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^{10}}

Explanation

Solution

We use the concept of binomial expansion and count the value of r when starting from beginning and when starting from end. Write the terms and find their ratio by dividing one term by another.

  • A binomial expansion helps us to expand expressions of the form (a+b)n{(a + b)^n}through the formula (a+b)n=r=0nnCr(a)nr(b)r{(a + b)^n} = \sum\limits_{r = 0}^n {^n{C_r}{{(a)}^{n - r}}{{(b)}^r}}
  • Formula of combination is given bynCr=n!(nr)!r!^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}, where factorial is expanded by the formula n!=n×(n1)!=n×(n1)×(n2)!....=n×(n1)×(n2)....3×2×1n! = n \times (n - 1)! = n \times (n - 1) \times (n - 2)!.... = n \times (n - 1) \times (n - 2)....3 \times 2 \times 1
  • Ratio of any number ‘x’ to ‘y’ is given by x:y=xyx:y = \dfrac{x}{y}

Complete step-by-step solution:
We are given the term(21/3+12(3)1/3)10{\left( {{2^{1/3}} + \dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^{10}} ……….… (1)
Here n=10;a=21/3;b=12(3)1/3n = 10;a = {2^{1/3}};b = \dfrac{1}{{2{{(3)}^{1/3}}}}
We use binomial expansion to expand the given term
(21/3+12(3)1/3)10=r=01010Cr(21/3)10r(12(3)1/3)r\Rightarrow {\left( {{2^{1/3}} + \dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^{10}} = \sum\limits_{r = 0}^{10} {^{10}{C_r}{{\left( {{2^{1/3}}} \right)}^{10 - r}}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^r}}
(21/3+12(3)1/3)10=10C0(21/3)100(12(3)1/3)0+10C1(21/3)101(12(3)1/3)1+......+10C10(21/3)1010(12(3)1/3)10\Rightarrow {\left( {{2^{1/3}} + \dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^{10}}{ = ^{10}}{C_0}{\left( {{2^{1/3}}} \right)^{10 - 0}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^0}{ + ^{10}}{C_1}{\left( {{2^{1/3}}} \right)^{10 - 1}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^1} + ......{ + ^{10}}{C_{10}}{\left( {{2^{1/3}}} \right)^{10 - 10}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^{10}}
From this expansion we can write the fifth term from starting has r=4r = 4 and the fifth term from end has r=6r = 6.
We find the terms separately and then find the ratio.
Fifth term from starting:
Here n=10;a=21/3;b=12(3)1/3;r=4n = 10;a = {2^{1/3}};b = \dfrac{1}{{2{{(3)}^{1/3}}}};r = 4
Let the fifth term from end be denoted by ‘x’
x=10C4(21/3)104(12(3)1/3)4\Rightarrow x{ = ^{10}}{C_4}{\left( {{2^{1/3}}} \right)^{10 - 4}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^4}
x=10C4(21/3)6(12(3)1/3)4\Rightarrow x{ = ^{10}}{C_4}{\left( {{2^{1/3}}} \right)^6}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^4}
Use combination formulanCr=n!(nr)!r!^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}, where factorial is expanded by the formula n!=n×(n1)!=n×(n1)×(n2)!....=n×(n1)×(n2)....3×2×1n! = n \times (n - 1)! = n \times (n - 1) \times (n - 2)!.... = n \times (n - 1) \times (n - 2)....3 \times 2 \times 1
x=10!6!4!(21/3)6(12(3)1/3)4\Rightarrow x = \dfrac{{10!}}{{6!4!}}{\left( {{2^{1/3}}} \right)^6}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^4}..................… (1)
Fifth term from ending:
Here n=10;a=21/3;b=12(3)1/3;r=6n = 10;a = {2^{1/3}};b = \dfrac{1}{{2{{(3)}^{1/3}}}};r = 6
Let the fifth term from end be denoted by ‘y’
y=10C6(21/3)106(12(3)1/3)6\Rightarrow y{ = ^{10}}{C_6}{\left( {{2^{1/3}}} \right)^{10 - 6}}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^6}
y=10C6(21/3)4(12(3)1/3)6\Rightarrow y{ = ^{10}}{C_6}{\left( {{2^{1/3}}} \right)^4}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^6}
Use combination formulanCr=n!(nr)!r!^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}, where factorial is expanded by the formula n!=n×(n1)!=n×(n1)×(n2)!....=n×(n1)×(n2)....3×2×1n! = n \times (n - 1)! = n \times (n - 1) \times (n - 2)!.... = n \times (n - 1) \times (n - 2)....3 \times 2 \times 1
y=10!6!4!(21/3)4(12(3)1/3)6\Rightarrow y = \dfrac{{10!}}{{6!4!}}{\left( {{2^{1/3}}} \right)^4}{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)^6}............… (2)
Now we find the ratio of two terms by dividing equation (1) by (2)
xy=10!6!4!(21/3)6(12(3)1/3)410!6!4!(21/3)4(12(3)1/3)6\Rightarrow \dfrac{x}{y} = \dfrac{{\dfrac{{10!}}{{6!4!}}{{\left( {{2^{1/3}}} \right)}^6}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^4}}}{{\dfrac{{10!}}{{6!4!}}{{\left( {{2^{1/3}}} \right)}^4}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^6}}}
Cancel same terms from numerator and denominator
xy=(21/3)6(12(3)1/3)4(21/3)4(12(3)1/3)6\Rightarrow \dfrac{x}{y} = \dfrac{{{{\left( {{2^{1/3}}} \right)}^6}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^4}}}{{{{\left( {{2^{1/3}}} \right)}^4}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^6}}}
We use the formula a6=a4+2=a4.a2{a^6} = {a^{4 + 2}} = {a^4}.{a^2}to expand terms in numerator and denominator
xy=(21/3)4(21/3)2(12(3)1/3)4(21/3)4(12(3)1/3)4(12(3)1/3)2\Rightarrow \dfrac{x}{y} = \dfrac{{{{\left( {{2^{1/3}}} \right)}^4}{{\left( {{2^{1/3}}} \right)}^2}{{\left({\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^4}}}{{{{\left( {{2^{1/3}}} \right)}^4}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^4}{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^2}}}
Cancel same terms from numerator and denominator
xy=(21/3)2(12(3)1/3)2\Rightarrow \dfrac{x}{y} = \dfrac{{{{\left( {{2^{1/3}}} \right)}^2}}}{{{{\left( {\dfrac{1}{{2{{(3)}^{1/3}}}}} \right)}^2}}}
Solve the denominator using (am)n=amn{\left( {{a^m}} \right)^n} = {a^{mn}}
xy=22/3122(3)2/3\Rightarrow \dfrac{x}{y} = \dfrac{{{2^{2/3}}}}{{\dfrac{1}{{{2^2}{{(3)}^{2/3}}}}}}
Make fraction simpler
xy=22/322(3)2/31\Rightarrow \dfrac{x}{y} = \dfrac{{{2^{2/3}}{2^2}{{(3)}^{2/3}}}}{1}
xy=4×22/3(3)2/31\Rightarrow \dfrac{x}{y} = \dfrac{{4 \times {2^{2/3}}{{(3)}^{2/3}}}}{1}
We can write 22/3=(22)1/3=41/3{2^{2/3}} = {({2^2})^{1/3}} = {4^{1/3}}and32/3=(32)1/3=91/3{3^{2/3}} = {({3^2})^{1/3}} = {9^{1/3}}
xy=4×41/3×91/31\Rightarrow \dfrac{x}{y} = \dfrac{{4 \times {4^{1/3}} \times {9^{1/3}}}}{1}
Since we know when power is same base can be multiplied
xy=4×(4×9)1/31\Rightarrow \dfrac{x}{y} = \dfrac{{4 \times {{(4 \times 9)}^{1/3}}}}{1}
xy=4×361/31\Rightarrow \dfrac{x}{y} = \dfrac{{4 \times {{36}^{1/3}}}}{1}
Ratio of x:y=4×361/3:1x:y = 4 \times {36^{1/3}}:1

\therefore Ratio of fifth term from staring to the fifth term from end is 4×361/3:14 \times {36^{1/3}}:1

Note: Students many times make the mistake of writing the fifth term from starting and ending as the same i.e. having r=5r = 5. This is wrong as students start writing the values of r from 1, we always start writing the value of r from 0 to 10, so the fifth term from starting comes different from fifth term from end.