Solveeit Logo

Question

Question: A random variable \(X\) takes values \(0,1,2,3....\) with probability \(P\left( X=x \right)=k\left( ...

A random variable XX takes values 0,1,2,3....0,1,2,3.... with probability P(X=x)=k(x+1)(15)xP\left( X=x \right)=k\left( x+1 \right){{\left( \dfrac{1}{5} \right)}^{x}}, where kk is a constant, then P(X=0)P\left( X=0 \right) is equal to
1) 7/251)\text{ }7/25
2) 18/252)\text{ 18}/25
3) 13/253)\text{ 13}/25
4) 19/254)\text{ 19}/25
5) 16/255)\text{ 16}/25

Explanation

Solution

In this question we have been given with a probability function for which the random variable XX takes values from 0,1,2,30,1,2,3 upto infinity. Based on the given probability function we have to find the value of P(X=0)P\left( X=0 \right). We will solve this question by first finding the value of kk. We will also use the formula of the sum of series which is a+(a+d)r+(a+d)r2+...=a1r+dr(1r)2a+\left( a+d \right)r+\left( a+d \right){{r}^{2}}+...=\dfrac{a}{1-r}+\dfrac{dr}{{{\left( 1-r \right)}^{2}}}. We will then substitute X=0X=0 and get the required probability.

Complete step-by-step solution:
We have the function given to us as:
P(X=x)=k(x+1)(15)x\Rightarrow P\left( X=x \right)=k\left( x+1 \right){{\left( \dfrac{1}{5} \right)}^{x}}
Now we know that the sum of all the probabilities of an event is 11 therefore, we can write:
x=0P(X=x)=1\Rightarrow \sum\limits_{x=0}^{\infty }{P\left( X=x \right)=1}
Now from the question we have been given that P(X=x)=k(x+1)(15)xP\left( X=x \right)=k\left( x+1 \right){{\left( \dfrac{1}{5} \right)}^{x}} therefore, on substituting, we get:
x=0k(x+1)(15)x=1\Rightarrow \sum\limits_{x=0}^{\infty }{k\left( x+1 \right){{\left( \dfrac{1}{5} \right)}^{x}}=1}
Now since kk is a constant, we can take it out and write the expression as:
kx=0(x+1)(15)x=1\Rightarrow k\sum\limits_{x=0}^{\infty }{\left( x+1 \right){{\left( \dfrac{1}{5} \right)}^{x}}=1}
Now on expanding the sum by substituting the values, we get:
k[(0+1)(15)0+(1+1)(15)1+(2+1)(15)2+....]=1\Rightarrow k\left[ \left( 0+1 \right){{\left( \dfrac{1}{5} \right)}^{0}}+\left( 1+1 \right){{\left( \dfrac{1}{5} \right)}^{1}}+\left( 2+1 \right){{\left( \dfrac{1}{5} \right)}^{2}}+.... \right]=1
On simplifying, we get:
k[1+(1+1)(15)1+(2+1)(15)2+....]=1\Rightarrow k\left[ 1+\left( 1+1 \right){{\left( \dfrac{1}{5} \right)}^{1}}+\left( 2+1 \right){{\left( \dfrac{1}{5} \right)}^{2}}+.... \right]=1
Now we know the formula a+(a+d)r+(a+d)r2+...=a1r+dr(1r)2a+\left( a+d \right)r+\left( a+d \right){{r}^{2}}+...=\dfrac{a}{1-r}+\dfrac{dr}{{{\left( 1-r \right)}^{2}}}therefore, on substituting a=1a=1, d=1d=1 and r=15r=\dfrac{1}{5}, we get:
k[1115+1×15(115)2]=1\Rightarrow k\left[ \dfrac{1}{1-\dfrac{1}{5}}+\dfrac{1\times \dfrac{1}{5}}{{{\left( 1-\dfrac{1}{5} \right)}^{2}}} \right]=1
On taking the lowest common multiple, we get:
k[115+15(115)2]=1\Rightarrow k\left[ \dfrac{1-\dfrac{1}{5}+\dfrac{1}{5}}{{{\left( 1-\dfrac{1}{5} \right)}^{2}}} \right]=1
on using the expansion of (ab)2{{\left( a-b \right)}^{2}}, we get:
k[115+151+12525]=1\Rightarrow k\left[ \dfrac{1-\dfrac{1}{5}+\dfrac{1}{5}}{1+\dfrac{1}{25}-\dfrac{2}{5}} \right]=1
On simplifying, we get:
k[11625]=1\Rightarrow k\left[ \dfrac{1}{\dfrac{16}{25}} \right]=1
On rearranging the terms, we get:
k[2516]=1\Rightarrow k\left[ \dfrac{25}{16} \right]=1
On transferring the terms, we get:
k=1625\Rightarrow k=\dfrac{16}{25}
Therefore, we get the probability function as:
P(X=x)=(1625)(x+1)(15)xP\left( X=x \right)=\left( \dfrac{16}{25} \right)\left( x+1 \right){{\left( \dfrac{1}{5} \right)}^{x}}
Now we have to find P(X=0)P\left( X=0 \right) therefore, on substituting x=0x=0, we get:
P(X=0)=(1625)(0+1)(15)0P\left( X=0 \right)=\left( \dfrac{16}{25} \right)\left( 0+1 \right){{\left( \dfrac{1}{5} \right)}^{0}}
On simplifying, we get:
P(X=0)=1625P\left( X=0 \right)=\dfrac{16}{25}, which is the required solution.
Therefore, the correct answer is option (5)\left( 5 \right).

Note: It is to be noted that the general principle applied in this question is the sum of all the probabilities of an event is 11. It is to be remembered that the total probability can never exceed 11 neither can it be negative. The various series formulas should be remembered to convert an infinite series to a finite sum.