Solveeit Logo

Question

Question: A random variable X has the following probability distribution. | X = x | 0 | 1 | 2 | 3 | 4 | 5 | 6...

A random variable X has the following probability distribution.

| X = x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | P[X = x] | 0 | k | 2k | 2k | 3k | k^2 | 2k^2 | 7k^2 + k |

Then F(4) =

A

310\tfrac{3}{10}

B

110\tfrac{1}{10}

C

710\tfrac{7}{10}

D

45\tfrac{4}{5}

Answer

45\tfrac{4}{5}

Explanation

Solution

Step 1: Determine kk by using the normalization condition:

x=07P(X=x)=0+k+2k+2k+3k+k2+2k2+(7k2+k)=9k+10k2=1.\sum_{x=0}^7 P(X=x) = 0 + k + 2k + 2k + 3k + k^2 + 2k^2 + (7k^2 + k) = 9k + 10k^2 = 1.

Solve 10k2+9k1=010k^2 + 9k - 1 = 0:

k=9+92+4101210=9+1120=110.k = \frac{-9 + \sqrt{9^2 + 4\cdot10\cdot1}}{2\cdot10} = \frac{-9 + 11}{20} = \frac{1}{10}.

Step 2: Compute the cumulative distribution function at 4:

F(4)=P(X4)=x=04P(X=x)=0+k+2k+2k+3k=8k=8×110=45.F(4) = P(X \le 4) = \sum_{x=0}^4 P(X=x) = 0 + k + 2k + 2k + 3k = 8k = 8 \times \tfrac{1}{10} = \tfrac{4}{5}.

Hence, F(4)=45.\displaystyle F(4) = \tfrac{4}{5}.