Solveeit Logo

Question

Mathematics Question on Probability Distribution

A random variable X has the following probability distribution:X1234567
P(X)k2k2k3kk22k27k2 + k
Match the options of List-I to List-II :List-IList-II
(A) k(I) 7/10
(B) P(X < 3)(II) 53/100
(C) P(X ≥ 2)(III) 1/10
(D) P(2 < X ≤ 7)(IV) 3/10

Choose the correct answer from the options given below.

A

(A) - (I), (B) - (II), (C) - (III), (D) - (IV)

B

(A) - (III), (B) - (IV), (C) - (II), (D) - (I)

C

(A) - (III), (B) - (IV), (C) - (I), (D) - (II)

D

(A) - (I), (B) - (III), (C) - (II), (D) - (IV)

Answer

(A) - (I), (B) - (III), (C) - (II), (D) - (IV)

Explanation

Solution

We know that the sum of all probabilities P(X)P(X) must equal 1:

k+2k+2k+3k+k2+2k2+(7k2+k)=1.k + 2k + 2k + 3k + k^2 + 2k^2 + (7k^2 + k) = 1.

Simplify the equation:

8k+10k2=1.8k + 10k^2 = 1.

Dividing through by 2:

4k+5k2=12.4k + 5k^2 = \frac{1}{2}.

Solve the quadratic equation:

5k2+4k12=0.5k^2 + 4k - \frac{1}{2} = 0.

Using the quadratic formula:

k=4±424(5)(12)2(5)=4±16+1010=4±2610.k = \frac{-4 \pm \sqrt{4^2 - 4(5)(-\frac{1}{2})}}{2(5)} = \frac{-4 \pm \sqrt{16 + 10}}{10} = \frac{-4 \pm \sqrt{26}}{10}.

Since k>0k>0, we take:

k=4+2610.k = \frac{-4 + \sqrt{26}}{10}.

Substituting kk, compute probabilities:

P(X<3)=P(1)+P(2)=k+2k=3k.P(X<3) = P(1) + P(2) = k + 2k = 3k.

P(X>2)=P(3)+P(4)+P(5)+P(6)+P(7)=2k+3k+k2+2k2+(7k2+k).P(X>2) = P(3) + P(4) + P(5) + P(6) + P(7) = 2k + 3k + k^2 + 2k^2 + (7k^2 + k).

P(2<X<7)=P(3)+P(4)+P(5)+P(6).P(2<X<7) = P(3) + P(4) + P(5) + P(6).

Matching each value to the given List-II:

k=110k = \frac{1}{10} (Option III)

P(X<3)=310P(X<3) = \frac{3}{10} (Option IV)

P(X>2)=710P(X>2) = \frac{7}{10} (Option I)

P(2<X<7)=53100P(2<X<7) = \frac{53}{100} (Option II)

Final Matching: (A) - (III), (B) - (IV), (C) - (I), (D) - (II)