Question
Mathematics Question on Probability Distribution
A random variable X has the following probability distribution:X | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
P(X) | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Match the options of List-I to List-II :List-I | List-II |
---|---|
(A) k | (I) 7/10 |
(B) P(X < 3) | (II) 53/100 |
(C) P(X ≥ 2) | (III) 1/10 |
(D) P(2 < X ≤ 7) | (IV) 3/10 |
Choose the correct answer from the options given below.
(A) - (I), (B) - (II), (C) - (III), (D) - (IV)
(A) - (III), (B) - (IV), (C) - (II), (D) - (I)
(A) - (III), (B) - (IV), (C) - (I), (D) - (II)
(A) - (I), (B) - (III), (C) - (II), (D) - (IV)
(A) - (I), (B) - (III), (C) - (II), (D) - (IV)
Solution
We know that the sum of all probabilities P(X) must equal 1:
k+2k+2k+3k+k2+2k2+(7k2+k)=1.
Simplify the equation:
8k+10k2=1.
Dividing through by 2:
4k+5k2=21.
Solve the quadratic equation:
5k2+4k−21=0.
Using the quadratic formula:
k=2(5)−4±42−4(5)(−21)=10−4±16+10=10−4±26.
Since k>0, we take:
k=10−4+26.
Substituting k, compute probabilities:
P(X<3)=P(1)+P(2)=k+2k=3k.
P(X>2)=P(3)+P(4)+P(5)+P(6)+P(7)=2k+3k+k2+2k2+(7k2+k).
P(2<X<7)=P(3)+P(4)+P(5)+P(6).
Matching each value to the given List-II:
k=101 (Option III)
P(X<3)=103 (Option IV)
P(X>2)=107 (Option I)
P(2<X<7)=10053 (Option II)
Final Matching: (A) - (III), (B) - (IV), (C) - (I), (D) - (II)