Solveeit Logo

Question

Mathematics Question on Random Variables

A random variable XX has the following probability distribution : x01234
P(x)k2k4k6k8k

The value of P(1<X<4x2)P(1 < X < 4 | x ≤ 2) is equal to

A

47\frac{4}{7}

B

23\frac{2}{3}

C

37\frac{3}{7}

D

45\frac{4}{5}

Answer

47\frac{4}{7}

Explanation

Solution

  x∵ \;x is a random variable

  k+2k+4k+6k+8k=1∴\; k + 2k + 4k + 6k + 8k = 1

  k=121∴\; k =\frac{1}{21}

Then, P(1<x<4)x<=2)P(1<x<4)|x<=2)

=4k7k\frac{4k}{7k}

= 47\frac{4}{7}

Hence, the correct option is (A): 47\frac{4}{7}