Solveeit Logo

Question

Mathematics Question on Probability Distribution

A random variable XX has the following probability distribution:

X012otherwise
P(X)k2k3k0

Then:
(A) k=16k = \frac{1}{6}
(B) P(X<2)=12P(X < 2) = \frac{1}{2}
(C) E(X)=34E(X) = \frac{3}{4}
(D) P(1<X2)=56P(1 < X \leq 2) = \frac{5}{6}
Choose the correct answer from the options given below:

A

(A) and (B) only

B

(A), (B) and (C) only

C

(A), (B), (C) and (D)

D

(B), (C) and (D) only

Answer

(A), (B), (C) and (D)

Explanation

Solution

Step 1: Verify the value of kk: The sum of all probabilities must equal 1:

k+2k+3k=1    6k=1    k=16.k + 2k + 3k = 1 \implies 6k = 1 \implies k = \frac{1}{6}.

Hence, statement (A) is correct.

Step 2: Compute P(X<2):P(X < 2): Add the probabilities for X=0X = 0 and X=1X = 1:

P(X<2)=P(X=0)+P(X=1)=k+2k=3k.P(X < 2) = P(X = 0) + P(X = 1) = k + 2k = 3k.

Substituting k=16k = \frac{1}{6}:

P(X<2)=3×16=12.P(X < 2) = 3 \times \frac{1}{6} = \frac{1}{2}.

Hence, statement (B) is correct.

Step 3: Calculate E(X):E(X): The expected value is given by:

E(X)=X×P(X)=(0×k)+(1×2k)+(2×3k).E(X) = \sum X \times P(X) = (0 \times k) + (1 \times 2k) + (2 \times 3k).

Simplify:

E(X)=0+2k+6k=8k.E(X) = 0 + 2k + 6k = 8k.

Substituting k=16k = \frac{1}{6}:

E(X)=8×16=43.E(X) = 8 \times \frac{1}{6} = \frac{4}{3}.

Hence, statement (C) is correct.

Step 4: Evaluate P(1<X<2):P(1 < X < 2): Only X=2X = 2 satisfies 1<X<21 < X < 2. Thus:

P(1<X<2)=P(X=2)=3k.P(1 < X < 2) = P(X = 2) = 3k.

Substituting k=16k = \frac{1}{6}:

P(1<X<2)=3×16=12.P(1 < X < 2) = 3 \times \frac{1}{6} = \frac{1}{2}.

Hence, statement (D) is correct.

Correct Answer: 3. (A), (B), (C), and (D)