Question
Mathematics Question on Probability Distribution
A random variable X has the following probability distribution:
X | 0 | 1 | 2 | otherwise |
---|---|---|---|---|
P(X) | k | 2k | 3k | 0 |
Then:
(A) k=61
(B) P(X<2)=21
(C) E(X)=43
(D) P(1<X≤2)=65
Choose the correct answer from the options given below:
(A) and (B) only
(A), (B) and (C) only
(A), (B), (C) and (D)
(B), (C) and (D) only
(A), (B), (C) and (D)
Solution
Step 1: Verify the value of k: The sum of all probabilities must equal 1:
k+2k+3k=1⟹6k=1⟹k=61.
Hence, statement (A) is correct.
Step 2: Compute P(X<2): Add the probabilities for X=0 and X=1:
P(X<2)=P(X=0)+P(X=1)=k+2k=3k.
Substituting k=61:
P(X<2)=3×61=21.
Hence, statement (B) is correct.
Step 3: Calculate E(X): The expected value is given by:
E(X)=∑X×P(X)=(0×k)+(1×2k)+(2×3k).
Simplify:
E(X)=0+2k+6k=8k.
Substituting k=61:
E(X)=8×61=34.
Hence, statement (C) is correct.
Step 4: Evaluate P(1<X<2): Only X=2 satisfies 1<X<2. Thus:
P(1<X<2)=P(X=2)=3k.
Substituting k=61:
P(1<X<2)=3×61=21.
Hence, statement (D) is correct.
Correct Answer: 3. (A), (B), (C), and (D)