Solveeit Logo

Question

Question: A raindrop of mass 1 g falling from a height of 1 km hits the ground with a speed of \(50 \mathrm {~...

A raindrop of mass 1 g falling from a height of 1 km hits the ground with a speed of 50 ms150 \mathrm {~ms} ^ { - 1 }. If the resistive force is proportional to the speed of the drop, then the work done by the resistive force is :

(Take )

A

10 J

B

-10 J

C

8.75 J

D

-8.75 J

Answer

-8.75 J

Explanation

Solution

Here, m=1\mathrm { m } = 1 g=103\mathrm { g } = 10 ^ { - 3 } kg

H=1km = 1000 m = 103 m10 ^ { 3 } \mathrm {~m}

The change in kinetic energy of the drop is

ΔK=12mv20\Delta \mathrm { K } = \frac { 1 } { 2 } \mathrm { mv } ^ { 2 } - 0

=12×103×50×50=1.25 J= \frac { 1 } { 2 } \times 10 ^ { - 3 } \times 50 \times 50 = 1.25 \mathrm {~J}

The work done by the gravitational force is

Wg=mgh=103×10×10310 J\mathrm { W } _ { \mathrm { g } } = \mathrm { mgh } = 10 ^ { - 3 } \times 10 \times 10 ^ { 3 } 10 \mathrm {~J}

According to work-energy theorem

ΔK=wg+Wr\Delta \mathrm { K } = \mathrm { w } _ { \mathrm { g } } + \mathrm { W } _ { \mathrm { r } }

Where WrW _ { r } is the work done by the resistive force on the raindrop. Thus