Solveeit Logo

Question

Question: A radionuclide with disintegration constant $\lambda$ is produced in a reactor at a constant rate $\...

A radionuclide with disintegration constant λ\lambda is produced in a reactor at a constant rate α\alpha nuclei per sec. During each decay energy E0E_0 is released. 20% of this energy is utilised in increasing the temperature of water. Find the increase in temperature of m mass of water in time t. Specific heat of water is S. Assume that there is no loss of energy through water surface.

Answer

0.2αE0mS(t1λ(1eλt))\frac{0.2 \alpha E_0}{m S} \left( t - \frac{1}{\lambda} (1 - e^{-\lambda t}) \right)

Explanation

Solution

Let N(t)N(t) be the number of nuclei of the radionuclide at time tt.
The rate of production of nuclei is given as α\alpha.
The rate of disintegration of nuclei is λN(t)\lambda N(t).
The rate of change of the number of nuclei is given by the differential equation:
dNdt=αλN\frac{dN}{dt} = \alpha - \lambda N

Assuming that at t=0t=0, there are no nuclei of the radionuclide, i.e., N(0)=0N(0)=0.
We solve the differential equation:
dNdt+λN=α\frac{dN}{dt} + \lambda N = \alpha
This is a first-order linear differential equation. The integrating factor is eλdt=eλte^{\int \lambda dt} = e^{\lambda t}.
Multiply by the integrating factor:
eλtdNdt+λNeλt=αeλte^{\lambda t} \frac{dN}{dt} + \lambda N e^{\lambda t} = \alpha e^{\lambda t}
ddt(Neλt)=αeλt\frac{d}{dt}(N e^{\lambda t}) = \alpha e^{\lambda t}
Integrate from t=0t'=0 to t=tt'=t:
0tddt(N(t)eλt)dt=0tαeλtdt\int_0^t \frac{d}{dt'}(N(t') e^{\lambda t'}) dt' = \int_0^t \alpha e^{\lambda t'} dt'
[N(t)eλt]0t=α[eλtλ]0t[N(t') e^{\lambda t'}]_0^t = \alpha \left[ \frac{e^{\lambda t'}}{\lambda} \right]_0^t
N(t)eλtN(0)e0=αλ(eλte0)N(t) e^{\lambda t} - N(0) e^0 = \frac{\alpha}{\lambda} (e^{\lambda t} - e^0)
Since N(0)=0N(0)=0:
N(t)eλt=αλ(eλt1)N(t) e^{\lambda t} = \frac{\alpha}{\lambda} (e^{\lambda t} - 1)
N(t)=αλ(1eλt)N(t) = \frac{\alpha}{\lambda} (1 - e^{-\lambda t})

The rate of decay at time tt is R(t)=λN(t)R(t) = \lambda N(t).
R(t)=λαλ(1eλt)=α(1eλt)R(t) = \lambda \frac{\alpha}{\lambda} (1 - e^{-\lambda t}) = \alpha (1 - e^{-\lambda t}) nuclei per second.

Each decay releases energy E0E_0. The rate of energy release at time tt is P(t)=R(t)E0P(t) = R(t) E_0.
P(t)=αE0(1eλt)P(t) = \alpha E_0 (1 - e^{-\lambda t}) joules per second.

The total energy released from t=0t=0 to time tt is the integral of the power over this time interval:
Ereleased=0tP(t)dt=0tαE0(1eλt)dtE_{released} = \int_0^t P(t') dt' = \int_0^t \alpha E_0 (1 - e^{-\lambda t'}) dt'
Ereleased=αE00t(1eλt)dtE_{released} = \alpha E_0 \int_0^t (1 - e^{-\lambda t'}) dt'
Ereleased=αE0[teλtλ]0tE_{released} = \alpha E_0 \left[ t' - \frac{e^{-\lambda t'}}{-\lambda} \right]_0^t
Ereleased=αE0[t+1λeλt]0tE_{released} = \alpha E_0 \left[ t' + \frac{1}{\lambda} e^{-\lambda t'} \right]_0^t
Ereleased=αE0((t+1λeλt)(0+1λe0))E_{released} = \alpha E_0 \left( (t + \frac{1}{\lambda} e^{-\lambda t}) - (0 + \frac{1}{\lambda} e^0) \right)
Ereleased=αE0(t+1λeλt1λ)E_{released} = \alpha E_0 \left( t + \frac{1}{\lambda} e^{-\lambda t} - \frac{1}{\lambda} \right)
Ereleased=αE0(t1λ(1eλt))E_{released} = \alpha E_0 \left( t - \frac{1}{\lambda} (1 - e^{-\lambda t}) \right)

20% of this energy is utilised in increasing the temperature of water. The energy absorbed by water is QQ.
Q=0.20×Ereleased=0.20αE0(t1λ(1eλt))Q = 0.20 \times E_{released} = 0.20 \alpha E_0 \left( t - \frac{1}{\lambda} (1 - e^{-\lambda t}) \right)

This energy QQ increases the temperature of mass mm of water with specific heat SS. The relationship between heat absorbed and temperature change is Q=mSΔTQ = m S \Delta T, where ΔT\Delta T is the increase in temperature.
mSΔT=0.20αE0(t1λ(1eλt))m S \Delta T = 0.20 \alpha E_0 \left( t - \frac{1}{\lambda} (1 - e^{-\lambda t}) \right)

Solving for ΔT\Delta T:
ΔT=0.20αE0mS(t1λ(1eλt))\Delta T = \frac{0.20 \alpha E_0}{m S} \left( t - \frac{1}{\lambda} (1 - e^{-\lambda t}) \right)

This can also be written as:
ΔT=0.2αE0mSλ(λt(1eλt))\Delta T = \frac{0.2 \alpha E_0}{m S \lambda} (\lambda t - (1 - e^{-\lambda t}))
ΔT=0.2αE0mSλ(λt1+eλt)\Delta T = \frac{0.2 \alpha E_0}{m S \lambda} (\lambda t - 1 + e^{-\lambda t})