Solveeit Logo

Question

Physics Question on Nuclei

A radioactive substance with decay constant of 0.5s10.5\, s^{-1} is being produced at a constant rate of 50 nuclei per second. If there are no nuclei present initially, the time (in second) after which 25 nuclei will be present is

A

11

B

2ln(43)2ln\left(\frac{4}{3}\right)

C

ln2ln2

D

ln(43)ln\left(\frac{4}{3}\right)

Answer

2ln(43)2ln\left(\frac{4}{3}\right)

Explanation

Solution

Let N be the number of nuclei at any time t. Then dNdt=50λN\frac{dN}{dt} = 50-\lambda N or dN50λN=dt\frac{dN}{50-\lambda N} = dt Integrate both sides, we get 0NdN50λN=0tdt1λ[ln(50λN)]0N=t\int^{N}_{0} \frac{dN}{50-\lambda N} = \int^{t}_{0} dt\quad\Rightarrow\quad- \frac{1}{\lambda}\left[ln\left(50-\lambda N\right)\right]^{N}_{0} = t ln(50λN50)=λtln \left(\frac{50-\lambda N}{50}\right) = -\lambda t 50λN50=eλt;1λN50=eλtN=50λ(1eλt)\frac{50-\lambda N}{50} = e^{-\lambda t} ; 1-\frac{\lambda N}{50} = e^{-\lambda t} N = \frac{50}{\lambda} \left(1-e^{-\lambda t}\right) As N=25N = 25 and λ=0.5s1\lambda= 0.5 \,s^{-1} 25=500.5(1e0.5t),14=1e0.5t25 = \frac{50}{0.5}\left(1-e^{-0.5t}\right), \frac{1}{4} = 1-e^{-0.5t} e0.5t=34t=2ln(43)e^{-0.5t} = \frac{3}{4} \therefore t = 2ln \left(\frac{4}{3}\right)