Solveeit Logo

Question

Question: A radioactive nuclide is produced at the constant rate of n per second (say, by bombarding a target ...

A radioactive nuclide is produced at the constant rate of n per second (say, by bombarding a target with neutrons). The expected number N of nuclei in existence t seconds after the number is Nis given by –

A

N = N0e–lt

B

N = nλ\frac{n}{\lambda} + N0e–lt

C

N = nλ\frac{n}{\lambda} + (N0nλ)\left( N_{0}–\frac{n}{\lambda} \right) e–lt

D

N = nλ\frac{n}{\lambda} + (N0+nλ)\left( N_{0} + \frac{n}{\lambda} \right) e–lt

Answer

N = nλ\frac{n}{\lambda} + (N0nλ)\left( N_{0}–\frac{n}{\lambda} \right) e–lt

Explanation

Solution

Method 1 Method 2

dNdt\frac { \mathrm { dN } } { \mathrm { dt } }= n – lN At t = 0

= N = N0

1λ\frac { 1 } { \lambda }loge (nλN0nλN)\left( \frac { \mathrm { n } - \lambda \mathrm { N } _ { 0 } } { \mathrm { n } - \lambda \mathrm { N } } \right) = t Which is satisfied

N = nλ\frac { \mathrm { n } } { \lambda } + e–lt by (3) only