Solveeit Logo

Question

Question: A radioactive Nucleus X converts into a stable Nucleus Y. Half-life of X is 50 year. Calculate the a...

A radioactive Nucleus X converts into a stable Nucleus Y. Half-life of X is 50 year. Calculate the age of the radioactive sample when the ratio of X to Y is 1:15.

Explanation

Solution

This can be solved by laws of radioactive disintegration. The no. of atoms disintegrated per second at any instant is given by radioactive decay law.
N=N0e !!λ!! t\text{N}={{\text{N}}_{\text{0}}}{{\text{e}}^{-\text{ }\\!\\!\lambda\\!\\!\text{ t}}}
Here, N0 is No. of atoms originally present.
N is no. of atoms left undecayed in sample t
λ\lambda is decay constant.
Relation between half-life and decay constant is,
T=06931 !!λ!! \text{T}=\dfrac{\text{0}\cdot \text{6931}}{\text{ }\\!\\!\lambda\\!\\!\text{ }} , This is used to calculate decay constant.

Complete Step By Step Solution
We have given Nucleus X whose initial value is X0{{\text{X}}_{0}} . Since it converts into Y nucleus after decay,
Ratio of X and Y element is given by 115\dfrac{1}{15}
Now, X+Y=Y0\text{X}+\text{Y}={{\text{Y}}_{0}}
X+15X = X0\text{X}+\text{15X }=\text{ }{{\text{X}}_{0}}
16X=X0\text{16X}={{\text{X}}_{0}}
X0X=16\dfrac{{{\text{X}}_{0}}}{\text{X}}=16
Or, N0N=16\dfrac{{{\text{N}}_{0}}}{\text{N}}=16 where N0{{\text{N}}_{0}} and N is the No. of atoms present initially and after decay.
Use radioactive decay law,
N=N0e !!λ!! t\text{N}={{\text{N}}_{\text{0}}}{{\text{e}}^{-\text{ }\\!\\!\lambda\\!\\!\text{ t}}} --------(1)
 !!λ!! \text{ }\\!\\!\lambda\\!\\!\text{ } is decay constant.
t is age of sample
Now, calculate the decay constant from the
Half-life of X = 50 years.
 !!λ!! =069350\text{ }\\!\\!\lambda\\!\\!\text{ }=\dfrac{0\cdot 693}{50}
From eq. (1)
NN0=e !!λ!! t\dfrac{\text{N}}{{{\text{N}}_{\text{0}}}}={{\text{e}}^{-\text{ }\\!\\!\lambda\\!\\!\text{ t}}}
In N0N= !!λ!! t\dfrac{{{\text{N}}_{\text{0}}}}{\text{N}}=\text{ }\\!\\!\lambda\\!\\!\text{ t}
2303logNN0= !!λ!! t2\cdot 303\log \dfrac{\text{N}}{{{\text{N}}_{\text{0}}}}=\text{ }\\!\\!\lambda\\!\\!\text{ t}
Use the value of N0N\dfrac{{{\text{N}}_{\text{0}}}}{\text{N}} and λ\lambda in above eq.
2303log16=069350t2\cdot 303\log 16=\dfrac{0\cdot 693}{50}\text{t}
t=500693×2303×log24\text{t}=\dfrac{50}{0\cdot 693}\times 2\cdot 303\times \log {{2}^{4}}
t=500693×2303×4log2t=\dfrac{50}{0\cdot 693}\times 2\cdot 303\times 4\log 2
 !![!! lognm=m logn !!]!! \text{ }\\!\\![\\!\\!\text{ }\therefore \text{log}{{\text{n}}^{\text{m}}}\text{=m logn }\\!\\!]\\!\\!\text{ }
t=200\text{t}=200 year
This is the required result.

Note
We can also use another formula, NN0=(12)tT\dfrac{\text{N}}{{{\text{N}}_{\text{0}}}}={{\left( \dfrac{1}{2} \right)}^{^{\dfrac{\text{t}}{\text{T}}}}}
Here, T is half-life
t is the age of radioactive samples.
Use, NN0=(116)\dfrac{\text{N}}{{{\text{N}}_{\text{0}}}}\text{=}\left( \dfrac{\text{1}}{\text{16}} \right) , T = 50 year. (given in question).
116=(12)t50\dfrac{1}{16}={{\left( \dfrac{1}{2} \right)}^{\dfrac{t}{50}}}
(2)4=(2)t50{{\left( 2 \right)}^{-4}}={{\left( 2 \right)}^{\dfrac{-t}{50}}}
Taking antilog on both sides
4=t50-4=\dfrac{-t}{50} .
t = 200 year.