Solveeit Logo

Question

Physics Question on Nuclei

A radioactive nucleus AA with a half-life TT, decays into a nucleus BB. At t=0t = 0, there is no nucleus BB. At sometime t, the ratio of the number of BB to that of AA is 0.30.3. Then, tt is given by :

A

t=T2log2log(1.3)t = \frac{T}{2} \frac{\log \, 2}{\log \, (1.3)}

B

t=Tlog(1.3)log2t = T \frac{\log \, (1.3)}{\log \, 2}

C

t=Tlog(1.3)t = T \, \log (1.3)

D

t=Tlog(1.3)t = \frac{T }{\log \, (1.3)}

Answer

t=Tlog(1.3)log2t = T \frac{\log \, (1.3)}{\log \, 2}

Explanation

Solution

N0N0eλtN0eλt=0.3\frac{N_{0} - N_{0 }e^{-\lambda t}}{N_{0} e^{-\lambda t}} = 0.3
eλt=1.3\Rightarrow e^{\lambda t} = 1.3
λt=\therefore \lambda t = In 1.31.3
(In2T)t=\left(\frac{In\, 2}{T}\right) t = In 1.31.3
t=T.In(1.3)In2t = T. \frac{In\, \left(1.3\right)}{In\, 2}
t=Tlog(1.3)log2t = T \frac{\log\left(1.3\right)}{\log2 }