Solveeit Logo

Question

Question: A radioactive nuclei 'A' starts decaying from time t = 0 following law of radioactive decay. It deca...

A radioactive nuclei 'A' starts decaying from time t = 0 following law of radioactive decay. It decays in two ways. In first case, A2B+3CA \rightarrow 2B + 3C where B and C are stable daughter nuclei. In second case, AB+DA \rightarrow B + D where B and D are stable daughter nuclei. Initially only A is present. Decay constant for the two decays are 4hr14hr^{-1} and 2hr12hr^{-1} respectively. Find the ratio of total number of nuclei to the total number of radioactive nuclei at time t=ln(2)3hourt = \frac{ln(2)}{3}hour.

Answer

13

Explanation

Solution

Let the initial number of A nuclei be NA(0)N_A(0).

  1. Decay Law:
    NA(t)=NA(0)e(λ1+λ2)t=NA(0)e6tN_A(t) = N_A(0)e^{-(\lambda_1+\lambda_2)t} = N_A(0)e^{-6t}.

  2. Total decayed nuclei:
    Ndecayed=NA(0)(1e6t)N_{\text{decayed}} = N_A(0)\left(1-e^{-6t}\right).

  3. Branching Ratios:

    • For A2B+3CA\to 2B+3C (mode 1): probability =λ1λ1+λ2=46=23= \frac{\lambda_1}{\lambda_1+\lambda_2} = \frac{4}{6} = \frac{2}{3}.
    • For AB+DA\to B+D (mode 2): probability =26=13= \frac{2}{6} = \frac{1}{3}.
  4. Daughter nuclei produced:

    • Mode 1 gives 5 nuclei per decay (2B + 3C):
      Ndaughters,1=23NA(0)(1e6t)×5N_{\text{daughters,1}} = \frac{2}{3}N_A(0)\left(1-e^{-6t}\right)\times 5.
    • Mode 2 gives 2 nuclei per decay (B + D):
      Ndaughters,2=13NA(0)(1e6t)×2N_{\text{daughters,2}} = \frac{1}{3}N_A(0)\left(1-e^{-6t}\right)\times 2.

    Total daughters:

    Ndaughters=NA(0)(1e6t)[23×5+13×2]=NA(0)(1e6t)(10+23)=4NA(0)(1e6t).N_{\text{daughters}} = N_A(0)\left(1-e^{-6t}\right)\left[\frac{2}{3}\times 5 + \frac{1}{3}\times 2\right] = N_A(0)\left(1-e^{-6t}\right)\left(\frac{10+2}{3}\right) = 4N_A(0)\left(1-e^{-6t}\right).
  5. Total number of nuclei at time tt:

    Ntotal=NA(t)+Ndaughters=NA(0)e6t+4NA(0)(1e6t).N_{\text{total}} = N_A(t) + N_{\text{daughters}} = N_A(0)e^{-6t} + 4N_A(0)\left(1-e^{-6t}\right).
  6. Ratio (Total nuclei)/(Radioactive nuclei):

    NtotalNA(t)=e6t+4(1e6t)e6t=4e6t3.\frac{N_{\text{total}}}{N_A(t)} = \frac{e^{-6t} + 4\left(1-e^{-6t}\right)}{e^{-6t}} = 4e^{6t} - 3.
  7. Substitute t=ln23t = \frac{\ln 2}{3}:
    Here, 6t=6(ln23)=2ln2=ln46t = 6\left(\frac{\ln 2}{3}\right) = 2\ln2 = \ln 4.
    Thus,

    NtotalNA(t)=4eln43=4×43=163=13.\frac{N_{\text{total}}}{N_A(t)} = 4e^{\ln 4} - 3 = 4\times 4 - 3 = 16-3 = 13.

The ratio is 13.