Solveeit Logo

Question

Physics Question on Nuclei

A radioactive material decays by simultaneous emission of two particles with half-lives 1620 yr and 810 yr respectively. The time in year after which one-fourth of the material remains, is

A

4860 yr

B

3240 yr

C

2340 yr

D

1080 yr

Answer

1080 yr

Explanation

Solution

From Rutherford-Soddy law, the number of atoms left after n half-lives is given by
N=N0(12)nN={{N}_{0}}{{\left( \frac{1}{2} \right)}^{n}}
where, N.0{{N}_{.0}} is original number of atoms.
The number of half-life n=timeofdecayeffectivehalflifen=\frac{\text{time}\,\text{of}\,\text{decay}}{\text{effective}\,\text{half}-\text{life}}
Relation between effective disintegration constant
(λ)(\lambda ) and half-life (T) is λ=ln2T\lambda =\frac{\ln 2}{T}
\therefore λ1+λ2=ln2T1+ln2T2{{\lambda }_{1}}+{{\lambda }_{2}}=\frac{\ln \,2}{{{T}_{1}}}+\frac{\ln \,2}{{{T}_{2}}}
Effective half-life 1T=1T1+1T2=11620+1810\frac{1}{T}={{\frac{1}{T}}_{1}}+{{\frac{1}{T}}_{2}}=\frac{1}{1620}+\frac{1}{810}
1T=1+21620T=540yr\frac{1}{T}=\frac{1+2}{1620}\Rightarrow T=540\,yr
\therefore n=t540n=\frac{t}{540}
\therefore N=N0(12)t/540N={{N}_{0}}{{\left( \frac{1}{2} \right)}^{t/540}}
\Rightarrow NN0.=(12)2=(12)t/540\frac{N}{{{N}_{0.}}}={{\left( \frac{1}{2} \right)}^{2}}={{\left( \frac{1}{2} \right)}^{t/540}}
\Rightarrow t540=2\frac{t}{540}=2
t=2 !!×!! 540=1080yr\Rightarrow \,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{t=2 }\\!\\!\times\\!\\!\text{ 540=1080yr}