Solveeit Logo

Question

Question: A quantity x is given by \( \text{ }\\!\\!\varepsilon\\!\\!\text{ ,L}\dfrac{\vartriangle \text{V}}{\...

A quantity x is given by  !!ε!! ,LVt\text{ }\\!\\!\varepsilon\\!\\!\text{ ,L}\dfrac{\vartriangle \text{V}}{\vartriangle \text{t}} where  !!ε!! q{{\text{ }\\!\\!\varepsilon\\!\\!\text{ }}_{\text{q}}} is the permittivity of free space, L is a length, V\vartriangle \text{V} is a potential difference and t\vartriangle \text{t} is a time interval. The dimensional formula for X is the same as that of
(A) Resistance
(B) Charge
(C) Voltage
(D) Current

Explanation

Solution

We know that the force acting on the two charges separated by distance ‘r’
F=q1q2!!π!!  !!ε!! 0r2 = !!ε!! 0=q1q2!!π!! F r2 \begin{aligned} & \text{F=}\dfrac{{{\text{q}}_{\text{1}}}{{\text{q}}_{\text{2}}}}{\text{4 }\\!\\!\pi\\!\\!\text{ }{{\text{ }\\!\\!\varepsilon\\!\\!\text{ }}_{\text{0}}}{{\text{r}}^{\text{2}}}} \\\ & \text{=}{{\text{ }\\!\\!\varepsilon\\!\\!\text{ }}_{\text{0}}}\text{=}\dfrac{{{\text{q}}_{\text{1}}}{{\text{q}}_{\text{2}}}}{\text{4 }\\!\\!\pi\\!\\!\text{ F }{{\text{r}}^{\text{2}}}} \\\ \end{aligned}
Dimensional formula for  !!ε!! 0=[M-1L-3T !!α!! A2]{{\text{ }\\!\\!\varepsilon\\!\\!\text{ }}_{\text{0}}}\text{=}\left[ {{\text{M}}^{\text{-1}}}{{\text{L}}^{\text{-3}}}{{\text{T}}^{\text{ }\\!\\!\alpha\\!\\!\text{ }}}{{\text{A}}^{\text{2}}} \right]
Electric potential is given by
V=workcharge\text{V=}\dfrac{\text{work}}{\text{charge}}
Dimensional formula for V=[M1L1T3A1]\text{V=}\left[ {{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{-\text{3}}}{{\text{A}}^{-\text{1}}} \right].

Complete step by step solution
We know that  !!ε!! 0{{\text{ }\\!\\!\varepsilon\\!\\!\text{ }}_{\text{0}}} =frequently of free space and its dimensional formula is given by [M-1L-3T4I2]\left[ {{\text{M}}^{\text{-1}}}{{\text{L}}^{\text{-3}}}{{\text{T}}^{4}}{{\text{I}}^{\text{2}}} \right]
L= length having dimensional formula=[L]
V\vartriangle \text{V} =potential difference having dimensions formula =[ML2T3I1]=\left[ \text{M}{{\text{L}}^{2}}{{\text{T}}^{-3}}{{\text{I}}^{-1}} \right]
T\vartriangle \text{T} =time internal having dimensional formula =[T1]=\left[ {{\text{T}}^{1}} \right]
Formula for X is = !!ε!! 0 L V/t\text{=}{{\text{ }\\!\\!\varepsilon\\!\\!\text{ }}_{\text{0}}}\text{ L }\vartriangle \text{V/}\vartriangle \text{t}
Therefore, dimensional formula for ‘X’ is
=[M1L3T4I2] [L][ML2 T3 I1][T]=\dfrac{\left[ {{\text{M}}^{-\text{1}}}{{\text{L}}^{-\text{3}}}{{\text{T}}^{4}}{{\text{I}}^{\text{2}}} \right]\text{ }\left[ \text{L} \right]\left[ \text{M}{{\text{L}}^{2}}\text{ }{{\text{T}}^{-3}}\text{ }{{\text{I}}^{-1}} \right]}{\left[ \text{T} \right]}
=[T4 I2][L][ML2][ML3 T3 I T] =[I] \begin{aligned} & =\dfrac{\left[ {{\text{T}}^{4}}\text{ }{{\text{I}}^{2}} \right]\left[ \text{L} \right]\left[ \text{M}{{\text{L}}^{2}} \right]}{\left[ \text{M}{{\text{L}}^{3}}\text{ }{{\text{T}}^{3}}\text{ I T} \right]} \\\ & =\left[ \text{I} \right] \\\ \end{aligned}
And, dimensional formula for Q=[I]\text{Q}=\left[ \text{I} \right]
\therefore Quantities ‘X’ have the same dimensional formula as in charge.
\therefore Option (D) is correct.

Note
While doing finding the dimensional formula for any quantity the formula for that quantity should be clear because from the formula we can make a dimensional formula. We can use dimensional analysis to convert the physical quantity from one system to another to check the correctness of a physical relation, and to obtain relationships among various physical quantities involved.