Solveeit Logo

Question

Question: A quadrilateral is inscribed in a parabola \({{y}^{2}}=4ax\) and three of its sides pass through fix...

A quadrilateral is inscribed in a parabola y2=4ax{{y}^{2}}=4ax and three of its sides pass through fixed points on the axis. Show that the fourth side also passes through a fixed point on the axis of the parabola.

Explanation

Solution

Hint: Draw figure as mentioned. Take quadrilateral as ABCD. Consider the coordinate of A as (at12,2t1)\left( at_{1}^{2},2{{t}_{1}} \right) . Fixed slope of AB, thus get the equation of line AB. Take A, B, C, D as t1,t2,t3,t4{{t}_{1}},{{t}_{2}},{{t}_{3}},{{t}_{4}} . From the equation of line, you get t1,t2{{t}_{1}},{{t}_{2}} . similarly find t2,t3,t4{{t}_{2}},{{t}_{3}},{{t}_{4}} and multiply them together to find t1t4{{t}_{1}}-{{t}_{4}} as constant.

Complete step by step solution:

We have been given this equation of parabola as y2=4ax{{y}^{2}}=4ax . It is said that a quadrilateral is inscribed in this parabola. The 3 sides of the quadrilateral passes through fixed points in the axis. We know that a quadrilateral has 4 sides. As 3 sides are fixed, we need to show that the 4th side of the quadrilateral is also fixed on the axis of the parabola. Let us take the quadrilateral ABCD.

Point A and B touches the parabola y2=4ax{{y}^{2}}=4ax. Let us take the coordinates t1,t2,t3{{t}_{1}},{{t}_{2}},{{t}_{3}} and t4{{t}_{4}} for A,B, C and D.

Put x=at12x=at_{1}^{2} in the equation of parabola. y2=4ax{{y}^{2}}=4ax

y2=4a(at12)=y2=4a2t12\Rightarrow {{y}^{2}}=4a\left( at_{1}^{2} \right)={{y}^{2}}=4{{a}^{2}}t_{1}^{2} .

Take square of both sides,

y=2at1y=2a{{t}_{1}} . Thus, the coordinates of A are (x,y)=(at12,2at1)\left( x,y \right)=\left( at_{1}^{2},2a{{t}_{1}} \right) .

Similarly, the coordinates of B become (at22,2at2)\left( at_{2}^{2},2a{{t}_{2}} \right) .

Now let us find the slope of line AB. We know the formula for finding slope,

slope=y2y1x2x1\text{slope=}\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}} here, (x1,y1)=(at12,2at1),(x2,y2)=(at22,2at2)\left( {{x}_{1}},{{y}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)

\therefore slope of AB =2at22at1at22at12=2a(t2t1)a(t22t12)=\dfrac{2a{{t}_{2}}-2a{{t}_{1}}}{at_{2}^{2}-at_{1}^{2}}=\dfrac{2a\left( {{t}_{2}}-{{t}_{1}} \right)}{a\left( t_{2}^{2}-t_{1}^{2} \right)} .

We know that (t22t12)=(t2+t1)(t2t1)\left( t_{2}^{2}-t_{1}^{2} \right)=\left( {{t}_{2}}+{{t}_{1}} \right)\left( {{t}_{2}}-{{t}_{1}} \right) i.e. similar to a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) .

\therefore Slope of AB =2a(t2t1)a(t2t1)(t2+t1)=\dfrac{2a\left( {{t}_{2}}-{{t}_{1}} \right)}{a\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)} .

Cancel out a(t2t1)a\left( {{t}_{2}}-{{t}_{1}} \right) from the numerator & denominator.

\therefore Slope of AB =2t2+t1=m=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}=m

Thus, we can find the equation of line AB by using the formula, yy1=m(xx1)y-{{y}_{1}}=m\left( x-{{x}_{1}} \right) .

Put (x1,y1)=(at12,2at1)\left( {{x}_{1}},{{y}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right) and m=2t2+t1m=\dfrac{2}{{{t}_{2}}+{{t}_{1}}} .

y2at1=2t2+t1(xat12)y-2a{{t}_{1}}=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}\left( x-at_{1}^{2} \right)

Now let us simplify the above expression,

$\begin{aligned}

& \left( {{t}{1}}+{{t}{2}} \right)\left[ y-2a{{t}{1}} \right]=2\left( x-at{1}^{2} \right) \\

& y\left( {{t}{1}}+{{t}{2}} \right)-2a{{t}{1}}\left( {{t}{1}}+{{t}{2}} \right)=2x-2at{1}^{2} \\

& y\left( {{t}{1}}+{{t}{2}} \right)-2at_{1}^{2}-2a{{t}{1}}{{t}{2}}=2x-2at_{1}^{2} \\

\end{aligned}$

Cancel out 2at122at_{1}^{2} from LHS & RHS

y(t1+t2)2at1t2=2xy\left( {{t}_{1}}+{{t}_{2}} \right)-2a{{t}_{1}}{{t}_{2}}=2x

Now this line passes through a fixed point on the axis. So, we can put y = 0.

Putting the value, we get

$\begin{aligned}

& 0\times \left( {{t}{1}}+{{t}{2}} \right)-2a{{t}{1}}{{t}{2}}=2x \\

& \Rightarrow x=-a{{t}{1}}{{t}{2}} \\

\end{aligned}$

Let us take at1t2=x=k1-a{{t}_{1}}{{t}_{2}}=x={{k}_{1}} .

k1=at1t2\therefore {{k}_{1}}=-a{{t}_{1}}{{t}_{2}} , t1t2=k1a{{t}_{1}}{{t}_{2}}=-\dfrac{{{k}_{1}}}{a}

From equation of chord AB, we got t1t2=k1a{{t}_{1}}{{t}_{2}}=-\dfrac{{{k}_{1}}}{a} ……………… (2)

Similarly for BC, we get t2t3=k2a{{t}_{2}}{{t}_{3}}=-\dfrac{{{k}_{2}}}{a} …………….(3)

Similarly, for CD, we get t3t4=k3a{{t}_{3}}{{t}_{4}}=-\dfrac{{{k}_{3}}}{a} ………………… (4)

We get this because it’s told that 3 sides through fixed point and A, B, C, D are taken as t1,t2,t3,t4{{t}_{1}},{{t}_{2}},{{t}_{3}},{{t}_{4}} .

Now let us multiply (2), (3) and (4), we get,

(t1t2)×(t2t3)×(t3t4)=(k1a)(k2a)(k3a)\left( {{t}_{1}}{{t}_{2}} \right)\times \left( {{t}_{2}}{{t}_{3}} \right)\times \left( {{t}_{3}}{{t}_{4}} \right)=\left( -\dfrac{{{k}_{1}}}{a} \right)\left( -\dfrac{{{k}_{2}}}{a} \right)\left( -\dfrac{{{k}_{3}}}{a} \right)

Let us simplify the above expression.

$\begin{aligned}

& {{t}{1}}t{2}^{2}t_{3}^{2}{{t}{4}}=-\dfrac{{{k}{1}}{{k}{2}}{{k}{3}}}{{{a}^{3}}} \\

& \Rightarrow {{t}{1}}{{t}{4}}\left( t_{2}^{2}t_{3}^{2} \right)=-\dfrac{{{k}{1}}{{k}{2}}{{k}_{3}}}{{{a}^{3}}} \\

\end{aligned}$

Put t2t3=k2a{{t}_{2}}{{t}_{3}}=-\dfrac{{{k}_{2}}}{a}

& {{t}_{1}}{{t}_{4}}{{\left( {{t}_{2}}{{t}_{3}} \right)}^{2}}=-\dfrac{{{k}_{1}}{{k}_{2}}{{k}_{3}}}{{{a}^{3}}} \\\ & \Rightarrow {{t}_{1}}{{t}_{4}}{{\left( -\dfrac{{{k}_{2}}}{a} \right)}^{2}}=-\dfrac{{{k}_{1}}{{k}_{2}}{{k}_{3}}}{{{a}^{3}}} \\\ & \Rightarrow {{t}_{1}}{{t}_{4}}\left( \dfrac{k_{2}^{2}}{{{a}^{2}}} \right)=-\dfrac{{{k}_{1}}{{k}_{2}}{{k}_{3}}}{{{a}^{3}}} \\\ \end{aligned}$$ Cancel out $\dfrac{{{k}_{2}}}{{{a}^{2}}}$ from both sides. $${{t}_{1}}{{t}_{4}}\times {{k}_{2}}=-\dfrac{{{k}_{1}}{{k}_{3}}}{a}$$ $\therefore {{t}_{1}}{{t}_{4}}=-\dfrac{{{k}_{1}}{{k}_{3}}}{a{{k}_{2}}}=\text{constant}$ Hence, from this we can say that the 4th side of the quadrilateral also passes through a fixed point on the axis of parabola. Note: Parabola is not one of the easy concepts. It is important that you consider the 6 sides of the quadrilateral as ${{t}_{1}},{{t}_{2}},{{t}_{3}},{{t}_{4}}$ . Thus, as 3 points are fixed which are ${{t}_{1}}{{t}_{2}},{{t}_{2}}{{t}_{3}}$ and ${{t}_{3}}{{t}_{4}}$ , you need to find this ${{t}_{3}}{{t}_{4}}$ is constant and hence fixed.