Solveeit Logo

Question

Physics Question on Electronic devices

A  pure  silicon  crystal  with  5×1028atoms/m3 has ni=1.5×1016m3. It is doped with a concentration of 1 in 105 pentavalent atoms.The number density of holes (per m3) in the doped semiconductor will be: A \;pure \;silicon \;crystal \;with \; 5 \times 10^{28} \, \text{atoms/m}^3 \text{ has } n_i = 1.5 \times10^{16}\text{m}^{-3}.\text{ It is doped with a concentration of 1 in } 10^5 \text{ pentavalent atoms.}\text{The number density of holes (per m}^3\text{) in the doped semiconductor will be:}

A

4.5×103\quad 4.5 \times 10^3 \\\\

B

4.5×108\quad 4.5 \times 10^8 \\\\

C

(103)×1012\quad \left( \frac{10}{3} \right) \times 10^{12} \\\\

D

(103)×107\quad \left( \frac{10}{3} \right) \times 10^7

Answer

4.5×108\quad 4.5 \times 10^8 \\\\

Explanation

Solution

 Given: - The intrinsic carrier concentration ni=1.5×1016m3,\text{ Given: - The intrinsic carrier concentration } n_i = 1.5 \times 10^{16} \, \text{m}^{-3}, \\\\
- Doping concentration of pentavalent atoms Nd=5×1028105=5×1023m3.\text{- Doping concentration of pentavalent atoms } N_d = \frac{5 \times 10^{28}}{10^5} = 5 \times 10^{23} \, \text{m}^{-3}.\\\\
The number of holes p in the doped semiconductor is given by:\text{The number of holes } p \text{ in the doped semiconductor is given by:}
p=ni2Nd=(1.5×1016)25×1023=4.5×108m3p = \frac{n_i^2}{N_d} = \frac{(1.5 \times 10^{16})^2}{5 \times 10^{23}} = 4.5 \times 10^8 \, \text{m}^{-3}

Thus, the number density of holes is 4.5×108m3.\text{Thus, the number density of holes is } 4.5 \times 10^8 \, \text{m}^{-3}.