Solveeit Logo

Question

Question: A pulley is attached to one arm of a balance and a string passed round it carries two masses m<sub>1...

A pulley is attached to one arm of a balance and a string passed round it carries two masses m1 and m2. The balance is counter poised and the pulley is clamped so that m1 and m2 do not move. How much counter weight is to be reduced or increased to restore balance if the clamp is released ?

A

g(m1m2)2(m1+m2)\frac { g \left( m _ { 1 } - m _ { 2 } \right) ^ { 2 } } { \left( m _ { 1 } + m _ { 2 } \right) } to be reduced

B

g(m1m2)2(m1+m2)\frac { g \left( m _ { 1 } - m _ { 2 } \right) ^ { 2 } } { \left( m _ { 1 } + m _ { 2 } \right) } to be increased

C

g(m1m2)(m1+m2)\frac { g \left( m _ { 1 } - m _ { 2 } \right) } { \left( m _ { 1 } + m _ { 2 } \right) } to be reduced

D

g(m1m2)(m1+m2)\frac { g \left( m _ { 1 } - m _ { 2 } \right) } { \left( m _ { 1 } + m _ { 2 } \right) } to be increased

Answer

g(m1m2)2(m1+m2)\frac { g \left( m _ { 1 } - m _ { 2 } \right) ^ { 2 } } { \left( m _ { 1 } + m _ { 2 } \right) } to be reduced

Explanation

Solution

When pulley is clamped (or masses are stationary)

W1 = (m1 + m2)g ....(i)

When clamp is removed,

W2 = 2T = 4 m1 m2 m1+m2 g\frac { 4 \mathrm {~m} _ { 1 } \mathrm {~m} _ { 2 } } { \mathrm {~m} _ { 1 } + \mathrm { m } _ { 2 } } \mathrm {~g} ....(ii)

\ DW = W1 – W2 = (m1m2)2m1+m2 g\frac { \left( m _ { 1 } - m _ { 2 } \right) ^ { 2 } } { m _ { 1 } + m _ { 2 } } \mathrm {~g}