Solveeit Logo

Question

Question: A proton is projected with velocity $\overrightarrow{v}=2\hat{i}$ m/s in a region where magnetic fie...

A proton is projected with velocity v=2i^\overrightarrow{v}=2\hat{i} m/s in a region where magnetic field is B^=(i^+3j^+4k^)μT\hat{B}=(\hat{i}+3\hat{j}+4\hat{k})\mu T and electric field, E^=10i^μVm1\hat{E}=10\hat{i} \mu Vm^{-1}. Then, find out the net approximate acceleration of proton. (mass of proton = 1.6×10271.6 \times 10^{-27} kg)

Answer

The net approximate acceleration of the proton is 100021000\sqrt{2} m/s2^2 (or approximately 1414 m/s2^2).

Explanation

Solution

The problem asks for the net approximate acceleration of a proton moving in combined electric and magnetic fields.

The net force acting on a charged particle in combined electric and magnetic fields is given by the Lorentz force:

F=q(E+v×B)\overrightarrow{F} = q(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B})

According to Newton's second law, the acceleration of the particle is:

a=Fm=qm(E+v×B)\overrightarrow{a} = \frac{\overrightarrow{F}}{m} = \frac{q}{m}(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B})

Given values:

  • Charge of proton, q=+e=1.6×1019q = +e = 1.6 \times 10^{-19} C
  • Mass of proton, m=1.6×1027m = 1.6 \times 10^{-27} kg
  • Velocity, v=2i^\overrightarrow{v} = 2\hat{i} m/s
  • Magnetic field, B=(i^+3j^+4k^)μT=(i^+3j^+4k^)×106\overrightarrow{B} = (\hat{i}+3\hat{j}+4\hat{k})\mu T = (\hat{i}+3\hat{j}+4\hat{k}) \times 10^{-6} T
  • Electric field, E=10i^μVm1=10i^×106\overrightarrow{E} = 10\hat{i} \mu Vm^{-1} = 10\hat{i} \times 10^{-6} Vm1^{-1}

1. Calculate the cross product v×B\overrightarrow{v} \times \overrightarrow{B}:

v×B=(2i^)×((i^+3j^+4k^)×106)\overrightarrow{v} \times \overrightarrow{B} = (2\hat{i}) \times ((\hat{i}+3\hat{j}+4\hat{k}) \times 10^{-6}) =106[(2i^×i^)+(2i^×3j^)+(2i^×4k^)]= 10^{-6} [(2\hat{i} \times \hat{i}) + (2\hat{i} \times 3\hat{j}) + (2\hat{i} \times 4\hat{k})]

Using i^×i^=0\hat{i} \times \hat{i} = 0, i^×j^=k^\hat{i} \times \hat{j} = \hat{k}, and i^×k^=j^\hat{i} \times \hat{k} = -\hat{j}:

v×B=106[0+6(i^×j^)+8(i^×k^)]\overrightarrow{v} \times \overrightarrow{B} = 10^{-6} [0 + 6(\hat{i} \times \hat{j}) + 8(\hat{i} \times \hat{k})] =106[6k^8j^]= 10^{-6} [6\hat{k} - 8\hat{j}] =106(8j^+6k^)= 10^{-6} (-8\hat{j} + 6\hat{k}) T m/s

2. Calculate the term (E+v×B)(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B}):

E+v×B=(10i^×106)+(106(8j^+6k^))\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B} = (10\hat{i} \times 10^{-6}) + (10^{-6} (-8\hat{j} + 6\hat{k})) =106(10i^8j^+6k^)= 10^{-6} (10\hat{i} - 8\hat{j} + 6\hat{k})

3. Calculate the acceleration a\overrightarrow{a}:

a=qm(E+v×B)\overrightarrow{a} = \frac{q}{m}(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B}) a=1.6×10191.6×1027×106(10i^8j^+6k^)\overrightarrow{a} = \frac{1.6 \times 10^{-19}}{1.6 \times 10^{-27}} \times 10^{-6} (10\hat{i} - 8\hat{j} + 6\hat{k}) a=10(19(27))×106(10i^8j^+6k^)\overrightarrow{a} = 10^{(-19 - (-27))} \times 10^{-6} (10\hat{i} - 8\hat{j} + 6\hat{k}) a=108×106(10i^8j^+6k^)\overrightarrow{a} = 10^8 \times 10^{-6} (10\hat{i} - 8\hat{j} + 6\hat{k}) a=102(10i^8j^+6k^)\overrightarrow{a} = 10^2 (10\hat{i} - 8\hat{j} + 6\hat{k}) a=1000i^800j^+600k^\overrightarrow{a} = 1000\hat{i} - 800\hat{j} + 600\hat{k} m/s2^2

4. Calculate the magnitude of the acceleration:

The "net approximate acceleration" typically refers to the magnitude of the acceleration vector.

a=(1000)2+(800)2+(600)2|\overrightarrow{a}| = \sqrt{(1000)^2 + (-800)^2 + (600)^2} a=1000000+640000+360000|\overrightarrow{a}| = \sqrt{1000000 + 640000 + 360000} a=2000000|\overrightarrow{a}| = \sqrt{2000000} a=2×106|\overrightarrow{a}| = \sqrt{2 \times 10^6} a=1032|\overrightarrow{a}| = 10^3 \sqrt{2} a1000×1.414|\overrightarrow{a}| \approx 1000 \times 1.414 a1414|\overrightarrow{a}| \approx 1414 m/s2^2

Explanation of the solution:

  1. Calculate the Lorentz force acting on the proton, which is the sum of the electric force (qEq\overrightarrow{E}) and the magnetic force (q(v×B)q(\overrightarrow{v} \times \overrightarrow{B})).
  2. Substitute the given values for charge qq, velocity v\overrightarrow{v}, electric field E\overrightarrow{E}, and magnetic field B\overrightarrow{B} into the Lorentz force equation.
  3. Perform the vector cross product v×B\overrightarrow{v} \times \overrightarrow{B}.
  4. Sum the electric field term and the result of the cross product.
  5. Divide the net force by the mass of the proton mm to find the acceleration a=qm(E+v×B)\overrightarrow{a} = \frac{q}{m}(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B}).
  6. Calculate the magnitude of the acceleration vector a=ax2+ay2+az2|\overrightarrow{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}.