Solveeit Logo

Question

Physics Question on Moving charges and magnetism

A proton carrying 1 MeV kinetic energy is moving in a circular path of radius R in uniform magnetic field. What should be the energy of an α\alpha-particle to describe a circle of same radius in the same field?

A

2 MeV

B

1 MeV

C

0.5 MeV

D

4 MeV

Answer

1 MeV

Explanation

Solution

Kinetic energy of a charged particle,
K=12mv2K=\frac{1}{2}mv^2 or v=2Km v=\sqrt\frac{2K}{m}
Radius of the circular path of a charged particle in
uniform magnetic field is given by
R=mvBq=mBq2Km=2mKBqR=\frac{mv}{Bq}=\frac{m}{Bq}\sqrt\frac{2K}{m}=\frac{\sqrt{2mK}}{Bq}
Mass of a proton,mp=mm_p=m
Mass of an α\alpha-particle, mα=4m\, m_{\alpha}=4m
Charge of a proton, qp=eq_p=e
Charge of an α\alpha-particle, qα=2e\, q_{\alpha}=2e
Rp=2mpKpBqp=2mKpBe\therefore R_p=\frac{\sqrt{2m_p K_p}}{Bq_p}=\frac{\sqrt{2mK_p}}{Be}
and Rα=2mαKαBqαR_{\alpha}=\frac{\sqrt{2m_{\alpha} K_{\alpha}}}{Bq_{\alpha}}
=2(4m)KαB(2e)=2mKαBe=\frac{\sqrt{2(4m)K_{\alpha}}}{B(2e)}=\frac{\sqrt{2mK_{\alpha}}}{Be}
RpRα=KpKα\therefore \frac{R_p}{R_{\alpha}}=\sqrt\frac{K_p}{K_{\alpha}}
As Rp=RαR_p=R_{\alpha} (given)
Kα=Kp=1MeV\therefore K_{\alpha}=K_p=1 Me V